Patents by Inventor Maarten Sierhuis

Maarten Sierhuis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10890915
    Abstract: Methods and systems for generating a solution path overlay interface to transmit a solution path are described. The disclosed technology includes receiving vehicle data and external data from a vehicle. The vehicle data includes a vehicle location and a vehicle destination, and the external data includes a location and a movement path for each of a plurality of external objects. A solution path is determined between the vehicle location and the vehicle destination, wherein the solution path does not intersect with the plurality of external objects. A solution path overlay interface is generated that includes the vehicle traveling the solution path and at least some of the plurality of external objects. The solution path overlay interface is outputted for display that is configured to receive a command from an operator which results in an updated solution path that is transmitted to the vehicle for execution.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: January 12, 2021
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20210001882
    Abstract: According to some implementations of the present disclosure, a method for controlling an autonomous vehicle is disclosed. The method includes traversing the transportation network in accordance with a route and receiving vehicle sensor data from one or more vehicle sensors of the autonomous vehicle. The method also includes determining that the autonomous vehicle has encountered an occlusion scenario based on the vehicle sensor data. In response to determining that the autonomous vehicle has encountered the occlusion scenario, the method includes transmitting a request for infrastructure data to an external resource via a communication network, receiving infrastructure data from the external resource, determining a control action for the autonomous vehicle to perform based on the infrastructure data and the vehicle sensor data, and controlling the autonomous vehicle based on the control action.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 7, 2021
    Inventors: Ali Mortazavi, Maarten Sierhuis, Liam Pedersen
  • Patent number: 10839473
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for monitoring vehicles including autonomous vehicles are described. The disclosed technology includes a vehicle monitoring system that receives vehicle data and external data associated with a vehicle and a corresponding predetermined area. The vehicle data includes a vehicle state of the vehicle and the external data includes external states of external objects. An issue type of the vehicle is determined based on the vehicle state and at least one of the external states. An indication of the issue type is generated for display on an interface.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 17, 2020
    Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Publication number: 20200293065
    Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. A system comprises a memory and a processor configured to execute instructions stored in the memory to: assign vehicles to support queues based on state data, generate a map display including locations of the vehicles, and generate a state display including the support queues, vehicle manager indicators corresponding to the support queues and state indicators corresponding to the state data.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20200218255
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Patent number: 10705539
    Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. The disclosed technology receives state data for the vehicles by an apparatus such as a remote vehicle support apparatus. The state data indicates a respective current state for the vehicles. The vehicles are each assigned to respective remote vehicle support queues based on the respective state data. An indication that one of the vehicles is requesting remote support is received by the remote vehicle support apparatus. In response to a determination that a change in the state data indicates that autonomous operation of the one of the vehicles is operating outside of defined parameter values, the remote support is provided to the one of the vehicles through a communications link by transmitting instruction data to modify the autonomous operation of the one of the vehicles.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 7, 2020
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20200193549
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for monitoring vehicles including autonomous vehicles are described. The disclosed technology includes a vehicle monitoring system that receives vehicle data and external data associated with a vehicle and a corresponding predetermined area. The vehicle data includes a vehicle state of the vehicle and the external data includes external states of external objects. An issue type of the vehicle is determined based on the vehicle state and at least one of the external states. An indication of the issue type is generated for display on an interface.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 18, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Patent number: 10659991
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for providing bandwidth constrained image processing are described. The disclosed technology determines a data transfer rate of at least one signal received from a vehicle, the at least one signal including state/status data of the vehicle. In response to determining that the data transfer rate satisfies a data transfer rate criterion, a location of the vehicle and a location of at least one of a plurality of objects that obstruct the at least one signal is determined using the state data and external data associated with the vehicle. The disclosed technology generates optimized state data using the state data and the external data.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 19, 2020
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Patent number: 10591912
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 17, 2020
    Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Patent number: 10580296
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for generating risk indicators are described. The disclosed technology includes determining a vehicle route of a vehicle and external object routes of external objects. The vehicle route is determined using vehicle route data including a vehicle location and a vehicle destination. The external object routes are determined using external object route data including external object locations and external object destinations. Based on a comparison of the vehicle route data and the external object route data, external object routes that satisfy a proximity criterion are determined. Risk data for the vehicle is generated based on a vehicle state of the vehicle and external object states of the external objects corresponding to the external object routes that satisfy the proximity criterion. In response to determining that the risk data satisfies a risk criterion, at least one risk indicator is generated.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 3, 2020
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20200064831
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for generating solution data for autonomous vehicles to negotiate problem situations have been disclosed. The disclosed technology generates state data associated with a vehicle using sensor data received from the vehicle and from external objects within a vicinity of the vehicle. The state data includes any of a location of the vehicle, a destination of the vehicle, an operational status of the vehicle, and information associated with a vehicle environment. In response to determining that the state data satisfies a state criterion, a determination of solution profile data that matches the state data is made on the basis of a comparison of the state data to the solution profile data. Solution data is generated using the matching solution profile data to transmit the solution data to the vehicle for execution.
    Type: Application
    Filed: December 6, 2017
    Publication date: February 27, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20200068434
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for providing bandwidth constrained image processing are described. The disclosed technology determines a data transfer rate of at least one signal received from a vehicle, the at least one signal including state/status data of the vehicle. In response to determining that the data transfer rate satisfies a data transfer rate criterion, a location of the vehicle and a location of at least one of a plurality of objects that obstruct the at least one signal is determined using the state data and external data associated with the vehicle. The disclosed technology generates optimized state data using the state data and the external data.
    Type: Application
    Filed: December 6, 2017
    Publication date: February 27, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20200004239
    Abstract: A remote system for an autonomous vehicle, includes a receiver, a controller, and a display device. The receiver is configured to receive road information. The controller is programmed to receive input related to the road information and create a supervision zone when the road information impacts road drivability. The display device is disposed at a control center area and configured to display a visual indication on a map of the supervision zone.
    Type: Application
    Filed: December 22, 2017
    Publication date: January 2, 2020
    Inventors: Liam PEDERSEN, Siddharth THAKUR, Armelle GUERIN, Ali MORTAZAVI, Atsuhide KOBASHI, Mauro DELLA PENNA, Richard ENLOW, Andrea ANGQUIST, Richard SALLOUM, Stephen WU, Ben CHRISTEL, Shane HOGAN, John DENISTON, Jen HAMON, Sannidhi JALUKAR, Maarten SIERHUIS, Eric SCHAFER, David LEES, Dawn WHEELER, Mark ALLAN
  • Publication number: 20190376800
    Abstract: An autonomous vehicle service system having a display device, a receiver, and a controller. The receiver is configured to receive transmitted data from an autonomous vehicle related to status of the autonomous vehicle and information from a third party related to road conditions. The controller is programmed to monitor the transmitted data related to the status of the autonomous vehicle and the road conditions, determine when the autonomous vehicle requires assistance based on the transmitted data, and, when the autonomous vehicle requires assistance, cause information related to the autonomous vehicle to be displayed on the display device.
    Type: Application
    Filed: December 22, 2017
    Publication date: December 12, 2019
    Inventors: Liam PEDERSEN, Siddharth THAKUR, Armelle GUERIN, Ali MORTAZAVI, Atsuhide KOBASHI, Mauro DELLA PENNA, Richard ENLOW, Andrea ANGQUIST, Richard SALLOUM, Stephen WU, Ben CHRISTEL, Shane HOGAN, John DENISTON, Jen HAMON, Sannidhi JALUKAR, Maarten SIERHUIS, Eric SCHAFER, David LEES, Dawn WHEELER, Mark ALLAN
  • Publication number: 20190339701
    Abstract: Methods and systems for generating a solution path overlay interface to transmit a solution path are described. The disclosed technology includes receiving vehicle data and external data from a vehicle. The vehicle data includes a vehicle location and a vehicle destination, and the external data includes a location and a movement path for each of a plurality of external objects. A solution path is determined between the vehicle location and the vehicle destination, wherein the solution path does not intersect with the plurality of external objects. A solution path overlay interface is generated that includes the vehicle traveling the solution path and at least some of the plurality of external objects. The solution path overlay interface is outputted for display that is configured to receive a command from an operator which results in an updated solution path that is transmitted to the vehicle for execution.
    Type: Application
    Filed: December 6, 2017
    Publication date: November 7, 2019
    Inventors: Liam PEDERSEN, Maarten SIERHUIS, Hans UTZ, Mauro Della PENNA, Terrence FONG, Mark ALLAN, Maria BUALAT, Eric SCHAFER
  • Publication number: 20190311621
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for generating risk indicators are described. The disclosed technology includes determining a vehicle route of a vehicle and external object routes of external objects. The vehicle route is determined using vehicle route data including a vehicle location and a vehicle destination. The external object routes are determined using external object route data including external object locations and external object destinations. Based on a comparison of the vehicle route data and the external object route data, external object routes that satisfy a proximity criterion are determined. Risk data for the vehicle is generated based on a vehicle state of the vehicle and external object states of the external objects corresponding to the external object routes that satisfy the proximity criterion. In response to determining that the risk data satisfies a risk criterion, at least one risk indicator is generated.
    Type: Application
    Filed: December 6, 2017
    Publication date: October 10, 2019
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Publication number: 20190294159
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Application
    Filed: November 30, 2017
    Publication date: September 26, 2019
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Publication number: 20190278298
    Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. The disclosed technology receives state data for the vehicles by an apparatus such as a remote vehicle support apparatus. The state data indicates a respective current state for the vehicles. The vehicles are each assigned to respective remote vehicle support queues based on the respective state data. An indication that one of the vehicles is requesting remote support is received by the remote vehicle support apparatus. In response to a determination that a change in the state data indicates that autonomous operation of the one of the vehicles is operating outside of defined parameter values, the remote support is provided to the one of the vehicles through a communications link by transmitting instruction data to modify the autonomous operation of the one of the vehicles.
    Type: Application
    Filed: November 30, 2017
    Publication date: September 12, 2019
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Patent number: 10115305
    Abstract: Methods, apparatuses, and non-transitory computer readable storage media for optimizing driving time based on traffic signal states are described. The disclosed technology includes a vehicle that is able to determine, based on route data, a plurality of distances that correspond to paths between a vehicle location and a destination location for the vehicle. The route data can include a map of a predetermined area that includes the vehicle location and the destination location. The vehicle can receive traffic signal data that includes traffic signal states for a corresponding traffic signals on the paths. The vehicle can determine travel times corresponding to a predetermined portion of the paths based on the distances and the traffic signal states. The vehicle can determine an optimized path between the vehicle location and the destination location based on the path that is determined to have the shortest travel time.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 30, 2018
    Assignee: Nissan North America, Inc.
    Inventors: Ali Mortazavi, Maarten Sierhuis, Mauro Della Penna
  • Publication number: 20180096597
    Abstract: Methods, apparatuses, and non-transitory computer readable storage media for optimizing driving time based on traffic signal states are described. The disclosed technology includes a vehicle that is able to determine, based on route data, a plurality of distances that correspond to paths between a vehicle location and a destination location for the vehicle. The route data can include a map of a predetermined area that includes the vehicle location and the destination location. The vehicle can receive traffic signal data that includes traffic signal states for a corresponding traffic signals on the paths. The vehicle can determine travel times corresponding to a predetermined portion of the paths based on the distances and the traffic signal states. The vehicle can determine an optimized path between the vehicle location and the destination location based on the path that is determined to have the shortest travel time.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Ali Mortazavi, Maarten Sierhuis, Mauro Della Penna