Patents by Inventor Machteld M. W. Mertens

Machteld M. W. Mertens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11325111
    Abstract: Catalysts including at least one microporous material (e.g., zeolite), an organosilica material binder, and at least one catalyst metal are provided herein. Methods of making the catalysts, preferably without surfactants and processes of using the catalysts, e.g., for aromatic hydrogenation, are also provided herein.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: May 10, 2022
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Paul Podsiadlo, Quanchang Li, David C. Calabro, Kiara M. Benitez, Machteld M. W. Mertens, Scott J. Weigel, Doron Levin, Randall D. Partridge
  • Patent number: 10351639
    Abstract: This invention relates in certain aspects to a process for removing oxygenates from a stream, preferably a hydrocarbon stream comprising contacting an organosilica material with the hydrocarbon steam, where the organosilica material is a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3, wherein Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group or an oxygen atom bonded to a silicon atom of another monomer.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Machteld M. W. Mertens, Jo Ann M. Canich, Suzzy C. H. Ho, Quanchang Li
  • Patent number: 10294312
    Abstract: A catalyst system comprising a combination of: 1) an activator; 2) one or more metallocene catalyst compounds; 3) a support comprising an organosilica material, which may be a mesoporous organosilica material. The organosilica material may be a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3 (I), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 21, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew W. Holtcamp, Gregory S. Day, David F. Sanders, David C. Calabro, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 10294175
    Abstract: Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, such as for example, cyclopentadiene, and catalyst compositions for use in such process. The process comprising the steps of contacting said feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form said product. The catalyst composition comprising a crystalline aluminosilicate having a constraint index of less than or equal to 5, and a Group 10 metal, and, optionally, a Group 11 metal, in combination with a Group 1 alkali metal and/or a Group 2 alkaline earth metal.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 21, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Jeremy W. Bedard, Karl G. Strohmaier, Machteld M. W. Mertens, Robert T. Carr, Jane C. Cheng
  • Patent number: 10266622
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds having at least one nitrogen linkage and at least one oxygen linkage to a transition metal; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include ONNO-type transition metal catalysts, ONYO-Type transition metal catalysts, and/or oxadiazole transition metal catalysts. The organosilica material is a polymer of at least one monomer of Formula [z?OZ2 SiCH2]3(l), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 23, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Charles J. Harlan, Quanchang Li, Machteld M. W. Mertens
  • Publication number: 20190105647
    Abstract: Catalysts including at least one microporous material (e.g., zeolite), an organosilica material binder, and at least one catalyst metal are provided herein. Methods of making the catalysts, preferably without surfactants and processes of using the catalysts, e.g., for aromatic hydrogenation, are also provided herein.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 11, 2019
    Inventors: Paul Podsiadlo, Quanchang Li, David C. Calabro, Kiara M. Benitez, Machteld M.W. Mertens, Scott J. Weigel, Doron Levin, Randall D. Partridge
  • Patent number: 10239967
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one nitrogen linkage; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include pyridyldiamido transition metal complexes, HN5 compounds, and bis(imino)pyridyl complexes. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 26, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Charles J. Harlan, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 10202318
    Abstract: The invention relates to catalysts and their use in processes for conversion of hydrocarbon feedstock to a product comprising single-ring aromatic hydrocarbons having six or more carbon atoms, to the methods of making such catalysts, to processes for using such catalysts, and to apparatus and systems for carrying out such processes. One of more of the catalysts comprise a crystalline aluminosilicate having a Constraint Index in the range of 1 to 12, a first metal and/or a second metal, and at least one selectivating agent, such as, for example, an organo-silicate.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 12, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, Paul F. Keusenkothen, Machteld M. W. Mertens, Anthony Go
  • Patent number: 10195600
    Abstract: Catalysts including at least one microporous material (e.g., zeolite), an organosilica material binder, and at least one catalyst metal are provided herein. Methods of making the catalysts, preferably without surfactants and processes of using the catalysts, e.g., for aromatic hydrogenation, are also provided herein.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: February 5, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul Podsiadlo, Quanchang Li, David C. Calabro, Kiara M. Benitez, Machteld M. W. Mertens, Scott J. Weigel, Doron Levin, Randall D. Partridge
  • Patent number: 10155826
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one oxygen linkage, such as a phenoxide transition metal compound; 2) a support comprising an organosilica material, which may be a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include biphenyl phenol catalysts (BPP). The organosilica material may be a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3 (I), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: December 18, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew W. Holtcamp, Charles J. Harlan, Quanchang Li, Machteld M. W. Mertens
  • Patent number: 9994658
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Patent number: 9994657
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Michelle E. Titone, Machteld M. W. Mertens, Gerardo J. Majano Sanchez
  • Patent number: 9982067
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a pyridyldiamido compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 29, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, John R. Hagadorn, Gregory S. Day, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Publication number: 20170354961
    Abstract: Catalysts including at least one microporous material (e.g., zeolite), an organosilica material binder, and at least one catalyst metal are provided herein. Methods of making the catalysts, preferably without surfactants and processes of using the catalysts, e.g., for aromatic hydrogenation, are also provided herein.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Paul Podsiadlo, Quanchang Li, David C. Calabro, Kiara M. Benitez, Machteld M.W. Mertens, Scott J. Weigel, Doron Levin, Randall D. Partridge
  • Publication number: 20170327604
    Abstract: A catalyst system comprising a combination of: 1) an activator; 2) one or more metallocene catalyst compounds; 3) a support comprising an organosilica material, which is a mesoporous organosilica material. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2 SiCh2]3(i), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silic-on atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 salkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 12, 2015
    Publication date: November 16, 2017
    Inventors: Matthew W. HOLTCAMP, Gregory S. DAY, David F. SANDERS, David C. CALABRO, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170320977
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one nitrogen linkage; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include pyridyldiamido transition metal complexes, HN5 compounds, and bis(imino)pyridyl complexes. The organosilica material is a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 9, 2017
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170320971
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds having at least one nitrogen linkage and at least one oxygen linkage to a transition metal; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include ONNO-type transition metal catalysts, ONYO-Type transition metal catalysts, and/or oxadiazole transition metal catalysts. The organosilica material is a polymer of at least one monomer of Formula [z?0Z2 SiCH2]3(1), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 9, 2017
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Publication number: 20170313791
    Abstract: A photovoltaic module comprising: (a) a photovoltaic laminate including: two or more electrically conducting dements extending through the photovoltaic laminate so that power is moved from one photovoltaic module towards another photovoltaic module or towards an inverter; and (b) one or more connectors connected to each of the two or more electrically conducting elements by a connection joint, each of the one or more connectors include: two or more opposing terminals that each are connected to and extend from one of the two or more electrically conducing elements; wherein a dielectric space is located between the two or more opposing terminals and the dielectric space blocks material used to form a connection joint from passing from a first terminal to a second terminal, the material from the connection joint cools before the material passes from one terminal to a second terminal, the material fails to travel from the first terminal to the second terminal, or a combination thereof.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 2, 2017
    Inventors: Machteld M.W. MERTENS, Jo Ann M. CANICH, Suzzy C.H. HO, Quanchang LI
  • Publication number: 20170306068
    Abstract: A catalyst system comprising a combination of: 1) one or more catalyst compounds comprising at least one oxygen linkage, such as a phenoxide transition metal compound; 2) a support comprising an organosilica material, which may be a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include biphenyl phenol catalysts (BPP). The organosilica material may be a polymer of at least one monomer of Formula [Z1OZ2SiCH2]3 (I), where Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4 alkoxy group, a C1-C6 alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
    Type: Application
    Filed: December 11, 2015
    Publication date: October 26, 2017
    Inventors: Matthew W. HOLTCAMP, Charles J. HARLAN, Quanchang LI, Machteld M.W. MERTENS
  • Patent number: 9789477
    Abstract: In a process for the synthesis of a crystalline molecular sieve material having the EUO framework type, a synthesis mixture is provided suitable for the formation of an EUO framework type molecular sieve and comprising N,N,N,N?,N?,N?-hexamethylhexanediammonium, Q, cations and a colloidal suspension of seed crystals of an EUO framework type molecular sieve. The synthesis mixture is crystallized and an EUO framework type molecular sieve in the form individual crystals and/or aggregates of crystals having an average size, d50, as measured by laser scattering, of less than 15 ?m is recovered from the synthesis mixture.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: October 17, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Machteld M. W. Mertens