Patents by Inventor Maciej SOSNA

Maciej SOSNA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230364615
    Abstract: A device is provided which comprises: i) a chip comprising a first region for manipulating a plurality of microdroplets; ii) a microdroplet source for providing the microdroplets; iii) a channel having a distal end, which extends in a first direction into the chip, and a proximal end, which is in fluid communication with the microdroplet source; and iv) a pressure source for moving the microdroplets from the microdroplet source along the channel and into the first region of the chip. The pressure source is configured to enable the movement of the microdroplets from the microdroplet source into the proximal end of the channel at a first velocity. Furthermore, the distal end of the channel is fluted or blunted such that the microdroplets move from the distal end of the channel into the first region of the chip at a velocity which is lower than the first velocity.
    Type: Application
    Filed: October 5, 2021
    Publication date: November 16, 2023
    Applicant: LIGHTCAST DISCOVERY LTD
    Inventors: Evangelia-Nefeli ATHANASOPOULOU, William DEACON, Richard Jeremy INGHAM, Thomas Henry ISAAC, Maciej SOSNA, Andreas Michael WAEBER
  • Publication number: 20230256448
    Abstract: A method of handling an adherent cell in a microdroplet assaying system by conjugating an adherent cell to a microbead is provided. The method 50 comprises the steps of: loading a first plurality of microdroplets into a microfluidic space, wherein each of the first microdroplet 5 contains a microbead 52 and a first fluid; loading a second plurality of microdroplets into the microfluidic space, wherein each of the second microdroplet contains an adherent cell and a second fluid 54; merging the first plurality of microdroplets and the second plurality of microdroplets to form a plurality of merged microdroplets 56, each merged microdroplets containing the first and second fluids, at least one microbead and at least one adherent cell; and10 agitating each of the merged microdroplets 58 to cause the first and second fluids in each of the merged microdroplets to move such that at least one adherent cell adhere to the at least one microbead. [FIG.
    Type: Application
    Filed: May 14, 2021
    Publication date: August 17, 2023
    Applicant: LIGHTCAST DISCOVERY LTD
    Inventors: Maciej SOSNA, Evangelia-Nefeli ATHANASOPOULOU, Mei WU
  • Publication number: 20230042115
    Abstract: A method of manipulating microdroplets having an average volume in the range 0.5 femtolitres to 10 nanolitres comprised of at least one biological component and a first aqueous medium having a water activity of aw1 of less than 1 is provided. It is characterised by the step of maintaining the microdroplets in a water-immiscible carrier fluid which further includes secondary droplets having an average volume less than 25% of the average volume of the microdroplets up to and including a maximum of 4 femtolitres and wherein the volume ratio of carrier fluid to total volume of microdroplets per unit volume of the total is greater than 2:1. The method may be employed for example with microdroplets containing biological cells or with microdroplets containing single nucleoside phosphate such as are prepared in a droplet-based nucleic acid sequencer.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 9, 2023
    Applicant: Lightcast Discovery Ltd
    Inventors: Tom ISAAC, Barnaby BALMFORTH, Jasmin CONTERIO, Kerr Francis JOHNSON, Maciej SOSNA, Richard INGHAM, Gareth PODD
  • Patent number: 11504715
    Abstract: A method of manipulating microdroplets having an average volume in the range 0.5 femtolitres to 10 nanolitres comprised of at least one biological component and a first aqueous medium having a water activity of aw1 of less than 1 is provided. It is characterised by the step of maintaining the microdroplets in a water-immiscible carrier fluid which further includes secondary droplets having an average volume less than 25% of the average volume of the microdroplets up to and including a maximum of 4 femtolitres and wherein the volume ratio of carrier fluid to total volume of microdroplets per unit volume of the total is greater than 2:1. The method may be employed for example with microdroplets containing biological cells or with microdroplets containing single nucleoside phosphate such as are prepared in a droplet-based nucleic acid sequencer.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: November 22, 2022
    Assignee: LIGHTCAST DISCOVERY LTD
    Inventors: Tom Isaac, Barnaby Balmforth, Jasmin Conterio, Kerr Francis Johnson, Maciej Sosna, Richard Ingham, Gareth Podd
  • Publication number: 20220274113
    Abstract: A device for manipulating microdroplets, the device comprising a microfluidic chip adapted to receive and manipulate microdroplets dispersed in carrier fluid flowing along pathways on a surface of the chip, wherein the microdroplets are manipulated using an optically-mediated electrowetting (oEWOD) force; characterised in that the surface of the chip comprises a coating structure configured to allow controlled attachment and/or detachment of adherent cells contained within the microdroplets by application of the oEWOD force.
    Type: Application
    Filed: July 10, 2020
    Publication date: September 1, 2022
    Applicant: Lightcast Discovery Ltd.
    Inventors: Cameron FRAYLING, Thomas Henry ISAAC, Maciej SOSNA, Evangelia-Nefeli ATHANASOPOULOU
  • Publication number: 20220088606
    Abstract: A method of manipulating microdroplets having an average volume in the range 0.5 femtolitres to 10 nanolitres comprised of at least one biological component and a first aqueous medium having a water activity of aw1 of less than 1 is provided. It is characterised by the step of maintaining the microdroplets in a water-immiscible carrier fluid which further includes secondary droplets having an average volume less than 25% of the average volume of the microdroplets up to and including a maximum of 4 femtolitres and wherein the volume ratio of carrier fluid to total volume of microdroplets per unit volume of the total is greater than 2:1. The method may be employed for example with microdroplets containing biological cells or with microdroplets containing single nucleoside phosphate such as are prepared in a droplet-based nucleic acid sequencer.
    Type: Application
    Filed: February 7, 2020
    Publication date: March 24, 2022
    Applicant: Lightcast Discovery Ltd
    Inventors: Tom ISAAC, Barnaby BALMFORTH, Jasmin CONTERIO, Kerr Francis JOHNSON, Maciej SOSNA, Richard INGHAM, Gareth PODD
  • Publication number: 20200277668
    Abstract: A first apparatus for sequencing a polynucleotide analyte is provided an apparatus for sequencing a polynucleotide analyte comprising: (a) a first zone for generating a flowing stream of single nucleotides by progressive pyrophosphorolysis of a molecule of the analyte attached to a particle and exposed to a flowing aqueous medium; (b) a second zone for generating a corresponding stream of aqueous droplets from the aqueous medium and the nucleotide stream and wherein at least some of the droplets contain a single nucleotide; and (c) a third zone for storing and/or for interrogating each droplet to reveal a property characteristic of the single nucleotide it may contain; wherein in that the first zone includes at least one chemically-modified substrate adapted to bind temporarily to a particle having at least two different regions adapted to bind respectively to the substrate and to the analyte.
    Type: Application
    Filed: February 17, 2017
    Publication date: September 3, 2020
    Applicant: BASE4 INNOVATION LIMITED
    Inventors: Cameron Alexander FRAYLING, Thomas ISAAC, Maciej SOSNA