Patents by Inventor Madan Mohan Bhasin
Madan Mohan Bhasin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12251686Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: GrantFiled: August 16, 2023Date of Patent: March 18, 2025Inventor: Madan Mohan Bhasin
-
Publication number: 20230405561Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: ApplicationFiled: August 16, 2023Publication date: December 21, 2023Inventor: Madan Mohan Bhasin
-
Patent number: 11772082Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: GrantFiled: June 15, 2021Date of Patent: October 3, 2023Inventor: Madan Mohan Bhasin
-
Patent number: 11547985Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: GrantFiled: August 18, 2021Date of Patent: January 10, 2023Inventor: Madan Mohan Bhasin
-
Patent number: 11396007Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: GrantFiled: August 18, 2021Date of Patent: July 26, 2022Inventor: Madan Mohan Bhasin
-
Publication number: 20210379571Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: ApplicationFiled: August 18, 2021Publication date: December 9, 2021Inventor: Madan Mohan Bhasin
-
Publication number: 20210379572Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).Type: ApplicationFiled: August 18, 2021Publication date: December 9, 2021Inventor: Madan Mohan Bhasin
-
Patent number: 9676695Abstract: A method is disclosed of coupling and integrating natural gas recovery and separation along with chemical conversion. The method can comprise extracting at least one natural gas component. Non-limiting examples of the extracted component include ethane, propane, butanes, and pentanes. The method can also comprise contacting a natural gas stream with a catalyst under conditions that selectively convert at least one component into at least one product, such as ethylene, acetic acid, polyethylene, vinyl acetate, ethylene vinyl acetate, ethylene oxide, ethylene glycol, and their derivatives, propylene, polypropylene, propylene oxide, propylene glycol, acrylates, acrolein, acrylic acid, butenes, butadiene, methacrolein, methacrylic acid, methacrylates, and their derivatives, which can then be separated from the remaining components.Type: GrantFiled: February 29, 2012Date of Patent: June 13, 2017Inventors: Mark Allen Nunley, Madan Mohan Bhasin, William George Etzkorn, George Ernest Keller, II, Parvez H. Wadia
-
Publication number: 20120222422Abstract: A method is disclosed of coupling and integrating natural gas recovery and separation along with chemical conversion. The method can comprise extracting at least one natural gas component. Non-limiting examples of the extracted component include ethane, propane, butanes, and pentanes. The method can also comprise contacting a natural gas stream with a catalyst under conditions that selectively convert at least one component into at least one product, such as ethylene, acetic acid, polyethylene, vinyl acetate, ethylene vinyl acetate, ethylene oxide, ethylene glycol, and their derivatives, propylene, polypropylene, propylene oxide, propylene glycol, acrylates, acrolein, acrylic acid, butenes, butadiene, methacrolein, methacrylic acid, methacrylates, and their derivatives, which can then be separated from the remaining components.Type: ApplicationFiled: February 29, 2012Publication date: September 6, 2012Inventors: Mark Allen Nunley, Madan Mohan Bhasin, William George Etzkorn, George Ernest Keller, II, Parvez H. Wadia
-
Patent number: 6765101Abstract: A method and apparatus for synthesizing at least one of alkylene oxides and alkylene glycols from lower alkanes and/or lower alkenes. In the preferred embodiment, the apparatus includes a lower alkane/alkene supply; an oxygen supply for providing a source of oxygen; and a metal oxide catalytic reactor. The metal oxide catalytic reactor includes a reactor chamber; and a catalyst in the chamber for reacting the lower alkane/alkene supply with the source of oxygen to convert the lower alkane/alkene by selective partial oxidation to at least one of the alkylene oxides and alkylene glycols. Also, in the preferred embodiment, a separator, downstream from the reactor, separates the alkylene oxides and alkylene glycols from the total product stream and the unconverted reactants.Type: GrantFiled: May 1, 2001Date of Patent: July 20, 2004Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Madan Mohan Bhasin, Stephen Wayne King
-
Patent number: 6576803Abstract: The present invention provides a catalyst for the oxidative dehydrogenation of a lower hydrocarbon to form at least one higher hydrocarbon and/or lower olefin. In one embodiment, the catalyst includes a nonstoichiometric rare earth oxycarbonate of the formula MXCYOZ having a disordered and/or defect structure, wherein M is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; X=2; Z=3+AY; A is less than about 1.8, and Y is the number of carbon atoms in the oxycarbonate. When used for the oxidative dehydrogenation of a lower hydrocarbon at a pressure above about 100 psig, the catalyst has a selectivity of at least about 40% to at least one higher hydrocarbon and/or lower olefin. Methods for preparing catalysts taught by the invention and processes for using the catalysts for the oxidative dehydrogenation of lower hydrocarbons are also provided.Type: GrantFiled: April 16, 2002Date of Patent: June 10, 2003Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Rick David Cantrell, Anca Ghenciu, Kenneth Dwight Campbell, David Michael Anthony Minahan, Madan Mohan Bhasin, Alistair Duncan Westwood, Kenneth Andrew Nielsen
-
Patent number: 6518476Abstract: The present invention provides methods for manufacturing olefins such as ethylene and propylene from lower alkanes, that is, methane, ethane and/or propane, by oxidative dehydrogenation at elevated pressure. The olefins are selectively recovered from unconverted lower alkane feed and reaction byproducts by using a complexation separation, such as an absorption separation that uses aqueous silver nitrate as the complexation agent. Catalysts are used that give high selectivity for oxidative dehydrogenation of lower alkanes to olefins at elevated pressure, such as a nonstoichiometric rare earth oxycarbonate catalyst.Type: GrantFiled: September 18, 2000Date of Patent: February 11, 2003Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Gary Lynn Culp, Vincent Joseph Stricker, James Russell Nelson, Madan Mohan Bhasin, Kenneth Andrew Nielsen
-
Publication number: 20020173420Abstract: The present invention provides a catalyst for the oxidative dehydrogenation of a lower hydrocarbon to form at least one higher hydrocarbon and/or lower olefin. In one embodiment, the catalyst includes a nonstoichiometric rare earth oxycarbonate of the formula MXCYOZ having a disordered and/or defect structure, wherein M is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; X=2; Z=3+AY; A is less than about 1.8, and Y is the number of carbon atoms in the oxycarbonate. When used for the oxidative dehydrogenation of a lower hydrocarbon at a pressure above about 100 psig, the catalyst has a selectivity of at least about 40% to at least one higher hydrocarbon and/or lower olefin. Methods for preparing catalysts taught by the invention and processes for using the catalysts for the oxidative dehydrogenation of lower hydrocarbons are also provided.Type: ApplicationFiled: April 16, 2002Publication date: November 21, 2002Inventors: Rick David Cantrell, Anca Ghenciu, Kenneth Dwight Campbell, David Michael Anthony Minahan, Madan Mohan Bhasin, Alistair Duncan Westwood, Kenneth Andrew Nielsen
-
Patent number: 6403523Abstract: The present invention provides a catalyst for the oxidative dehydrogenation of a lower hydrocarbon to form at least one higher hydrocarbon and/or lower olefin. In one embodiment, the catalyst includes a nonstoichiometric rare earth oxycarbonate of the formula MXCYOZ having a disordered and/or defect structure, wherein M is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; X=2; Z=3+AY; A is less than about 1.8, and Y is the number of carbon atoms in the oxycarbonate. When used for the oxidative dehydrogenation of a lower hydrocarbon at a pressure above about 100 psig, the catalyst has a selectivity of at least about 40% to at least one higher hydrocarbon and/or lower olefin. Methods for preparing catalysts taught by the invention and processes for using the catalysts for the oxidative dehydrogenation of lower hydrocarbons are also provided.Type: GrantFiled: September 18, 2000Date of Patent: June 11, 2002Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Rick David Cantrell, Anca Ghenciu, Kenneth Dwight Campbell, David Michael Anthony Minahan, Madan Mohan Bhasin, Alistair Duncan Westwood, Kenneth Andrew Nielsen
-
Publication number: 20010044557Abstract: The invention provides a process for synthesizing alkanolamines and/or alkyleneamines by reacting either an alkane, an alkene, or both with a source of oxygen and a source of nitrogen and, optionally, additional hydrogen to convert the alkane and/or alkene by selective partial oxidative amination to at least one of the desired end products. The invention further provides a regenerable catalyst for use in synthesizing alkanolamines and/or alkyleneamines by selective partial oxidative amination of alkanes and/or alkenes.Type: ApplicationFiled: June 28, 2001Publication date: November 22, 2001Inventors: Madan Mohan Bhasin, Stephen Wayne King
-
Patent number: 6281387Abstract: The invention provides a process for synthesizing alkanolamines and/or alkyleneamines by reacting either an alkane, an alkene, or both with a source of oxygen and a source of nitrogen and, optionally, additional hydrogen to convert the alkane and/or alkene by selective partial oxidative amination to at least one of the desired end products. The invention further provides a regenerable catalyst for use in synthesizing alkanolamines and/or alkyleneamines by selective partial oxidative amination of alkanes and/or alkenes.Type: GrantFiled: October 29, 1999Date of Patent: August 28, 2001Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Madan Mohan Bhasin, Stephen Wayne King
-
Patent number: 5856263Abstract: This invention is directed to an improved exhaust gas catalyst for the combustion of gaseous waste products from internal combustion engines, particularly automobiles, and industrial stationary source engines along with a method of making the same. The exhaust gas catalyst comprises a substantially pure alpha-alumina carrier and at least one noble metal selected from platinum, palladium and mixtures thereof, and has excellent stability over long-term use.Type: GrantFiled: January 16, 1997Date of Patent: January 5, 1999Assignee: Union Carbide Chemicals & Plastics Technology CorporationInventors: Madan Mohan Bhasin, Michael Scott Jarrell
-
Patent number: 4096164Abstract: A process for selectively preparing a mixture of two-carbon atom oxygenated hydrocarbons in which ethanol is the major component which comprises continuously contacting a reaction mixture containing hydrogen and carbon monoxide with a solid catalyst comprising rhodium in combination with molybdenum and/or tungsten at reaction conditions correlated so as to favor the formation of such two-carbon atom products, namely, acetic acid, acetaldehyde, and/or ethanol.Type: GrantFiled: August 30, 1976Date of Patent: June 20, 1978Assignee: Union Carbide CorporationInventors: Paul Clifford Ellgen, Madan Mohan Bhasin
-
Patent number: 4038175Abstract: There is described a catalyst composition suitable in the hydrogenation of, for example, dripolenes, which consists essentially of palladium, or platinum metal dispersed on e.g., an alpha-alumina support, said support possessing the following characteristics:A. a porosity of about 0.1 cubic centimeter to about 0.8 cubic centimeter per gram of support;B. a surface area of about 0.1 square meter to about 10 square meters per gram of support; andC. an average pore size of about 0.05 micron to about 100 microns, a major proportion of the pores having a pore size in the range of about 0.05 micron to about 10 microns, wherein the amount of palladium dispersed on the surface of the support is about 0.01 per cent to about 1.0 per cent by weight of metal based on the weight of the catalyst composition, and the amount of platinum dispersed on the surface of the support is about 0.02 per cent to about 2.0 per cent by weight of metal based on the weight of the catalyst composition; and wherein at least about 7.Type: GrantFiled: December 31, 1975Date of Patent: July 26, 1977Assignee: Union Carbide CorporationInventor: Madan Mohan Bhasin
-
Patent number: 4014913Abstract: A process for the selective preparation of two-carbon atom oxygenated hydrocarbons, namely acetic acid, ethanol, and acetaldehyde, by continuously contacting a reaction mixture containing hydrogen and carbon monoxide with a rhodium-manganese catalyst, at a combination of reaction conditions correlated so as to favor the formation of a substantial proportion of these products.Type: GrantFiled: June 26, 1975Date of Patent: March 29, 1977Assignee: Union Carbide CorporationInventors: Paul Clifford Ellgen, Madan Mohan Bhasin