Patents by Inventor Magdalena Kasendra

Magdalena Kasendra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952592
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 9, 2024
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20240076625
    Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a rheologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
    Type: Application
    Filed: September 7, 2023
    Publication date: March 7, 2024
    Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
  • Publication number: 20230416691
    Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
  • Patent number: 11788044
    Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: October 17, 2023
    Assignee: EMULATE, Inc.
    Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
  • Publication number: 20230151333
    Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.
    Type: Application
    Filed: November 9, 2022
    Publication date: May 18, 2023
    Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
  • Patent number: 11566231
    Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: January 31, 2023
    Assignee: EMULATE, INC.
    Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
  • Publication number: 20220282221
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 8, 2022
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20220145266
    Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.
    Type: Application
    Filed: December 1, 2021
    Publication date: May 12, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
  • Patent number: 11326149
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 11001795
    Abstract: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 11, 2021
    Assignee: Emulate, Inc.
    Inventors: S. Jordan Kerns, Jenifer Obrigewitch, Michael Salmon, Magdalena Kasendra, Benjamin Richards Umiker
  • Publication number: 20200332240
    Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
    Type: Application
    Filed: March 16, 2020
    Publication date: October 22, 2020
    Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
  • Publication number: 20200283732
    Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 10, 2020
    Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
  • Publication number: 20200231938
    Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.
    Type: Application
    Filed: September 13, 2017
    Publication date: July 23, 2020
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
  • Publication number: 20200224136
    Abstract: The present invention relates to fluidic systems for use in providing biomarkers for human Intestine On-Chip. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of stretch and flow are used for identifying differentially expressed genes as biomarkers, e.g. for specific types of drug testing for use in treating gastrointestinal disorders or diseases related to intestinal function.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 16, 2020
    Inventors: Magdalena Kasendra, Athanasia Apostolou, Carolina Lucchesi
  • Publication number: 20190031992
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20180224432
    Abstract: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: November 21, 2017
    Publication date: August 9, 2018
    Inventors: S. Jordan Kerns, Jenifer Obrigewitch, Michael Salmon, Magdalena Kasendra, Benjamin Richards Umiker