Patents by Inventor Magdalena Kasendra
Magdalena Kasendra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12104174Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.Type: GrantFiled: September 13, 2017Date of Patent: October 1, 2024Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Donald E. Ingber, Magdalena Kasendra, Alexandra Sontheimer-Phelps, Alessio Tovaglieri
-
Publication number: 20240301358Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.Type: ApplicationFiled: March 12, 2024Publication date: September 12, 2024Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
-
Publication number: 20240254449Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: April 4, 2024Publication date: August 1, 2024Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Patent number: 12018284Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.Type: GrantFiled: November 9, 2022Date of Patent: June 25, 2024Assignee: EMULATE, INC.Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
-
Patent number: 11976304Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.Type: GrantFiled: December 1, 2021Date of Patent: May 7, 2024Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Donald E. Ingber, Magdalena Kasendra, Alexandra Sontheimer-Phelps, Alessio Tovaglieri
-
Patent number: 11952592Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: February 23, 2022Date of Patent: April 9, 2024Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Publication number: 20240076625Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a rheologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.Type: ApplicationFiled: September 7, 2023Publication date: March 7, 2024Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
-
Publication number: 20230416691Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.Type: ApplicationFiled: September 6, 2023Publication date: December 28, 2023Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
-
Patent number: 11788044Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.Type: GrantFiled: March 16, 2020Date of Patent: October 17, 2023Assignee: EMULATE, Inc.Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
-
Publication number: 20230151333Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.Type: ApplicationFiled: November 9, 2022Publication date: May 18, 2023Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
-
Patent number: 11566231Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.Type: GrantFiled: March 20, 2020Date of Patent: January 31, 2023Assignee: EMULATE, INC.Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
-
Publication number: 20220282221Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: February 23, 2022Publication date: September 8, 2022Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Publication number: 20220145266Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.Type: ApplicationFiled: December 1, 2021Publication date: May 12, 2022Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
-
Patent number: 11326149Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: July 31, 2018Date of Patent: May 10, 2022Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Patent number: 11001795Abstract: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas.Type: GrantFiled: November 21, 2017Date of Patent: May 11, 2021Assignee: Emulate, Inc.Inventors: S. Jordan Kerns, Jenifer Obrigewitch, Michael Salmon, Magdalena Kasendra, Benjamin Richards Umiker
-
Publication number: 20200332240Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.Type: ApplicationFiled: March 16, 2020Publication date: October 22, 2020Inventors: Antonio Varone, Magdalena Kasendra, Carolina Lucchesi, S. Jordan Kerns, Riccardo Barrile, Sonalee Barthakur
-
Publication number: 20200283732Abstract: An in vitro microfluidic intestine on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic intestinal cell culture, which is some embodiments is derived from patient's enteroids-derived cells, is described comprising L cells, allowing for interactions between L cells and gastrointestinal epithelial cells, endothelial cells and immune cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal autoimmune tissue, e.g., diabetes, obesity, intestinal insufficiency and other inflammatory gastrointestinal disorders. These multicellular-layered microfluidic intestine on-chips further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal duodenum, small intestinal jejunum, small intestinal ileum, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e.Type: ApplicationFiled: March 20, 2020Publication date: September 10, 2020Inventors: Athanasia Apostolou, Antonio Varone, Magdalena Kasendra, Raymond Luc
-
Publication number: 20200231938Abstract: Described herein are methods for providing an in vitro intestinal model system, e.g., using primary cells instead of cell lines and/or cancerous cells.Type: ApplicationFiled: September 13, 2017Publication date: July 23, 2020Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGEInventors: Donald E. INGBER, Magdalena KASENDRA, Alexandra SONTHEIMER-PHELPS, Alessio TOVAGLIERI
-
Publication number: 20200224136Abstract: The present invention relates to fluidic systems for use in providing biomarkers for human Intestine On-Chip. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of stretch and flow are used for identifying differentially expressed genes as biomarkers, e.g. for specific types of drug testing for use in treating gastrointestinal disorders or diseases related to intestinal function.Type: ApplicationFiled: January 14, 2020Publication date: July 16, 2020Inventors: Magdalena Kasendra, Athanasia Apostolou, Carolina Lucchesi
-
Publication number: 20190031992Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: July 31, 2018Publication date: January 31, 2019Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra