Patents by Inventor Magnus Christian Bjerkeng

Magnus Christian Bjerkeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11809654
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: November 7, 2023
    Assignee: SINTEF TTO AS
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østem Pettersen
  • Publication number: 20230085902
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Application
    Filed: December 1, 2022
    Publication date: March 23, 2023
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østern Pettersen
  • Patent number: 11550419
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 10, 2023
    Assignee: SINTEF TTO AS
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østern Pettersen
  • Publication number: 20220171491
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østern Pettersen
  • Patent number: 11287917
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: March 29, 2022
    Assignee: SINTEF TTO AS
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østern Pettersen
  • Publication number: 20210271338
    Abstract: An input device comprises a plurality of optical vibration sensors mounted in a common housing. Each optical vibration sensor comprises a diffractive optical element; a light source arranged to illuminate the diffractive optical element such that a first portion of light passes through the diffractive optical element and a second portion of light is reflected from the diffractive optical element; and a photo detector arranged to detect an interference pattern generated by said first and second portions of light. The optical vibration sensor is configured so that in use, after the first portion of light passes through the diffractive optical element, the first portion of light is reflected from a reflective surface onto the photo detector. The input device is placed in contact with a surface of a solid body, and an object is brought into physical contact with the surface of the solid body, thereby causing vibrations in the solid body.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 2, 2021
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl, Odd Kristen Østern Pettersen
  • Publication number: 20200049731
    Abstract: An optical accelerometer arrangement (20) comprises an array of optical accelerometers (26) attached to a common structure (22). Each of the optical accelerometers (26) provides a signal indicative of displacement of a measurement mass (6) as a result of an acceleration along a given axis applied to the common structure (22). The arrangement (20) also comprises a processor (31a) configured to determine an estimate of the acceleration using the signals provided by the accelerometers (26). The arrangement (20) may be attached to an object (40; 46; 0; 52) which also comprises a gyroscope (44) and/or a camera (48).
    Type: Application
    Filed: May 26, 2017
    Publication date: February 13, 2020
    Inventors: Tobias Gulden Dahl, Magnus Christian Bjerkeng, Andreas Vogl