Patents by Inventor Maha Hammoud

Maha Hammoud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916185
    Abstract: A lithium iron phosphate electrochemically active material for use in an electrode and methods and systems related thereto are disclosed. In one example, a lithium iron phosphate electrochemically active material for use in an electrode is provided including, a dopant comprising vanadium and optionally a co-dopant comprising cobalt.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 27, 2024
    Assignee: A123 SYSTEMS LLC
    Inventors: Chuanjing Xu, Maha Hammoud, Judith M. LaForest, Hyojin Lee, Derek Johnson
  • Publication number: 20230253561
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 10, 2023
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 11652207
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: May 16, 2023
    Assignee: A123 Systems LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 11088389
    Abstract: A lithium iron phosphate electrochemically active material for use in an electrode and methods and systems related thereto are disclosed. In one example, a lithium iron phosphate electrochemically active material for use in an electrode is provided including, a dopant comprising vanadium and optionally a co-dopant comprising cobalt.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: August 10, 2021
    Assignee: A123 SYSTEMS LLC
    Inventors: Chuanjing Xu, Maha Hammoud, Judith M. Laforest, Hyojin Lee, Derek Johnson
  • Publication number: 20200052298
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: September 18, 2019
    Publication date: February 13, 2020
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20200014057
    Abstract: A lithium iron phosphate electrochemically active material for use in an electrode and methods and systems related thereto are disclosed. In one example, a lithium iron phosphate electrochemically active material for use in an electrode is provided including, a dopant comprising vanadium and optionally a co-dopant comprising cobalt.
    Type: Application
    Filed: August 23, 2019
    Publication date: January 9, 2020
    Inventors: Chuanjing XU, Maha HAMMOUD, Judith M. LAFOREST, Hyojin LEE, Derek JOHNSON
  • Patent number: 10522833
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 31, 2019
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20180183089
    Abstract: A lithium iron phosphate electrochemically active material for use in an electrode and methods and systems related thereto are disclosed. In one example, a lithium iron phosphate electrochemically active material for use in an electrode is provided including, a dopant comprising vanadium and optionally a co-dopant comprising cobalt.
    Type: Application
    Filed: June 8, 2016
    Publication date: June 28, 2018
    Inventors: Chuanjing XU, Maha HAMMOUD, Judith M. LAFOREST, Hyojin LEE, Derek JOHNSON
  • Patent number: 9954228
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: April 24, 2018
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20170229709
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 9660267
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: May 23, 2017
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20160380269
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: July 27, 2016
    Publication date: December 29, 2016
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20150180022
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 8956479
    Abstract: A composite material having utility for removing sulfur from a feedstock comprises a ceramic matrix having a relatively low melting point metal such as tin, zinc, lead or bismuth nanodispersed therein. The material may be prepared from a mixture of particles of a precursor of the ceramic matrix and precursor of the metal. The precursors are selected such that the melting point of the precursor of the ceramic is less than the melting point of the precursor of the metal. The mixture of precursor materials is heated to a temperature sufficient to melt the precursor of the ceramic material so as to coat it onto the precursor of the metal. The ceramic precursor is then reacted so as to convert it to a ceramic. Thereafter, the precursor of the metal is converted to a free metal which is retained within the ceramic matrix so as to prevent agglomeration.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: February 17, 2015
    Assignee: A123 Systems LLC
    Inventors: Hanwei Lei, Maha Hammoud, Adam Rand, Liya Wang
  • Publication number: 20110014102
    Abstract: A composite material having utility for removing sulfur from a feedstock comprises a ceramic matrix having a relatively low melting point metal such as tin, zinc, lead or bismuth nanodispersed therein. The material may be prepared from a mixture of particles of a precursor of the ceramic matrix and precursor of the metal. The precursors are selected such that the melting point of the precursor of the ceramic is less than the melting point of the precursor of the metal. The mixture of precursor materials is heated to a temperature sufficient to melt the precursor of the ceramic material so as to coat it onto the precursor of the metal. The ceramic precursor is then reacted so as to convert it to a ceramic. Thereafter, the precursor of the metal is converted to a free metal which is retained within the ceramic matrix so as to prevent agglomeration.
    Type: Application
    Filed: February 12, 2010
    Publication date: January 20, 2011
    Applicant: A123 Systems, Inc.
    Inventors: Hanwei Lei, Maha Hammoud, Adam Rand, Liya Wang