Patents by Inventor Mahanth K. Gowda

Mahanth K. Gowda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650334
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving GPS signals from each GPS satellite in view of the UAV, the GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: May 16, 2023
    Assignee: International Business Machines Corporation
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Publication number: 20210215833
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving GPS signals from each GPS satellite in view of the UAV, the GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Application
    Filed: December 30, 2020
    Publication date: July 15, 2021
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Patent number: 10976446
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving GPS signals from each GPS satellite in view of the UAV, the GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Publication number: 20190137633
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving GPS signals from each GPS satellite in view of the UAV, the GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Patent number: 10241214
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving raw GPS measurements from each GPS satellite in view of the UAV, the raw GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Patent number: 10128880
    Abstract: A data receiver includes a vibration sensor to sample data from vibrations in an incoming signal at a predetermined sampling rate, and a microcontroller, coupled to the vibration sensor, to control the sampling rate through an inter-integrated circuit (I2C) protocol or the like. A memory card, coupled to the microcontroller, stores the data with a serial peripheral interface (SPI) protocol or the like.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: November 13, 2018
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Nirupam Roy, Romit Roy Choudhury, Mahanth K. Gowda
  • Publication number: 20170254906
    Abstract: A method for applying GPS UAV attitude estimation to accelerate computer vision. The UAV has a plurality of GPS receivers mounted at fixed locations on the UAV. The method includes receiving raw GPS measurements from each GPS satellite in view of the UAV, the raw GPS measurements comprising pseudo-range and carrier phase data representing the distance between each GPS receiver and each GPS satellite. Carrier phase and pseudo-range measurements are determined for each GPS receiver based on the pseudo-range and carrier phase data. The GPS carrier phase and pseudo-range measurements are compared pair-wise for each pair of GPS receiver and satellite. An attitude of the UAV is determined based on the relative distance measurements. A 3D camera pose rotation matrix is determined based on the attitude of the UAV. Computer vision image search computations are performed for analyzing the image data received from the UAV in real time using the 3D camera pose rotation matrix.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Mahanth K. Gowda, Justin G. Manweiler, Justin D. Weisz
  • Publication number: 20170179986
    Abstract: A data receiver includes a vibration sensor to sample data from vibrations in an incoming signal at a predetermined sampling rate, and a microcontroller, coupled to the vibration sensor, to control the sampling rate through an inter-integrated circuit (I2C) protocol or the like. A memory card, coupled to the microcontroller, stores the data with a serial peripheral interface (SPI) protocol or the like.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Nirupam Roy, Romit Roy Choudhury, Mahanth K. Gowda
  • Patent number: 9608848
    Abstract: A data transmitter includes a vibration motor and a switch to regulate voltage from a direct-current (DC) power supply to the vibration motor. A microcontroller generates a pulse width modulation signal with which to drive the switch and regulate the voltage to the vibration motor in a sinusoidal manner, to generate data as symbols from vibrations that form a series of bits from the vibration motor. The microcontroller may also cancel and jam a sound of vibration (SoV) created by the vibration motor. A data receiver includes a vibration sensor to sample data from vibrations in an incoming signal at a predetermined sampling rate, and a microcontroller, coupled to the vibration sensor, to control the sampling rate through an inter-integrated circuit (I2C) protocol or the like. A memory card, coupled to the microcontroller, stores the data with a serial peripheral interface (SPI) protocol or the like.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 28, 2017
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nirupam Roy, Romit Roy Choudhury, Mahanth K. Gowda
  • Publication number: 20160119168
    Abstract: A data transmitter includes a vibration motor and a switch to regulate voltage from a direct-current (DC) power supply to the vibration motor. A microcontroller generates a pulse width modulation signal with which to drive the switch and regulate the voltage to the vibration motor in a sinusoidal manner, to generate data as symbols from vibrations that form a series of bits from the vibration motor. The microcontroller may also cancel and jam a sound of vibration (SoV) created by the vibration motor. A data receiver includes a vibration sensor to sample data from vibrations in an incoming signal at a predetermined sampling rate, and a microcontroller, coupled to the vibration sensor, to control the sampling rate through an inter-integrated circuit (I2C) protocol or the like. A memory card, coupled to the microcontroller, stores the data with a serial peripheral interface (SPI) protocol or the like.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Inventors: Nirupam Roy, Romit Roy Choudhury, Mahanth K. Gowda