Patents by Inventor Mahender nath Avula

Mahender nath Avula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230073214
    Abstract: The present disclosure relates generally to bioactive releasing membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the disclosure relates to novel bioactive releasing membranes, to devices and implantable devices including these membranes, methods for forming the bioactive releasing membranes on or around the implantable devices, and to methods for monitoring analyte levels in a biological fluid sample using an implantable analyte detection device.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 9, 2023
    Applicant: DexCom, Inc.
    Inventors: Shanger Wang, Mahender Nath Avula, Chris Dring, Ted Tang Lee, Xiangyou Liu, Shane Richard Parnell, Jiong Zou
  • Publication number: 20220296867
    Abstract: The present disclosure relates generally to drug releasing membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the disclosure relates to novel drug releasing membranes, to devices and implantable devices including these membranes, methods for forming the drug releasing membranes on or around the implantable devices, and to methods for monitoring analyte levels in a biological fluid sample using an implantable analyte detection device.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 22, 2022
    Applicant: DexCom, Inc.
    Inventors: Mahender Nath Avula, Chris Dring, Ted Tang Lee, Xiangyou Liu, Shane Richard Parnell, Shanger Wang, Jiong Zou
  • Patent number: 11445997
    Abstract: Systems and methods for accurately measuring changes in biomarker sensitive hydrogel volume and shape due to exposure to various biomarkers include a system for identifying one or more dimensional changes in a biomarker sensitive hydrogel positioned within an in vivo environment. The system includes a biomarker sensitive hydrogel positioned within an in vivo environment and configured to dimensionally change in response to interaction with predefined biomarkers. The system additionally includes an ultrasound transducer for locating and identifying one or more characteristics of the biomarker sensitive hydrogel and a computer system in electrical communication with the ultrasound transducer. The computer system is configured to receive characteristics of the biomarker sensitive hydrogel from the ultrasound transducer and determine dimensional changes of the biomarker sensitive hydrogel based on the received characteristics.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 20, 2022
    Assignees: UNIVERSITY OF UTAH RESEARCH FOUNDATION, SENTIOMED, INC.
    Inventors: Mahender nath Avula, Douglas A. Christensen, Navid Farhoudi, Stan Kanarowski, Julia Koerner, Jules John Magda, Rami Sami Marrouche, Christopher F. Reiche, Florian Solzbacher, Michael David Sorenson
  • Publication number: 20200093408
    Abstract: Systems, methods, and sensor devices for identifying one or more changes in a stimulus-responsive hydrogel include a sensor device having (i) a sensing structure and (ii) a stimulus-responsive hydrogel associated with a first side of the sensing structure. The sensing structure includes a flexible thin film polymer and an electric sensing element capable of electric impedance change, and the hydrogel is configured to dimensionally change in response to predefined stimuli such that a dimensional change of the hydrogel causes a change in an impedance property of the electric sensing element. Systems including such a sensor device can additionally include a meter in electrical communication with the sensor device to identify changes in the impedance properties of the structure and/or a catheter sheath configured for placement within an in vivo environment and is sized and shaped to receive the sensor device within a lumen thereof.
    Type: Application
    Filed: June 12, 2018
    Publication date: March 26, 2020
    Inventors: Florian Solzbacker, Stan Kanarowski, Jules John Magda, Mahender Nath Avula, Tatjana S. Bevans, Nassir F. Marrouche, Derek J. Sakata, Julia Koerner, Christopher Reiche
  • Publication number: 20190192113
    Abstract: Systems and methods for accurately measuring changes in biomarker sensitive hydrogel volume and shape due to exposure to various biomarkers include a system for identifying one or more dimensional changes in a biomarker sensitive hydrogel positioned within an in vivo environment. The system includes a biomarker sensitive hydrogel positioned within an in vivo environment and configured to dimensionally change in response to interaction with predefined biomarkers. The system additionally includes an ultrasound transducer for locating and identifying one or more characteristics of the biomarker sensitive hydrogel and a computer system in electrical communication with the ultrasound transducer. The computer system is configured to receive characteristics of the biomarker sensitive hydrogel from the ultrasound transducer and determine dimensional changes of the biomarker sensitive hydrogel based on the received characteristics.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 27, 2019
    Inventors: Mahender nath Avula, Douglas A. Christensen, Navid Farhoudi, Stan Kanarowski, Julia Koerner, Jules John Magda, Rami Sami Marrouche, Christopher F. Reiche, Florian Solzbacher, Michael David Sorenson