Patents by Inventor Mahendra Pakala
Mahendra Pakala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250142911Abstract: Embodiments of the present disclosure generally relate to epitaxial film stacks and vapor deposition processes for preparing the epitaxial film stacks. In one or more embodiments, a carbon-doped silicon-germanium and silicon mini-stack is produced with relatively low defects or crystal imperfections. A multi-layered epitaxial stack containing a plurality of the carbon-doped silicon-germanium and silicon mini-stacks is deposited on a substrate. Each multi-layered epitaxial stack contains a carbon-doped silicon germanium stack and a silicon film. The carbon-doped silicon germanium stack contains a carbon-silicon-germanium layer disposed between a first silicon-germanium layer and a second silicon-germanium layer. The silicon film contains the silicon bulk layer disposed on the silicon seed layer.Type: ApplicationFiled: September 18, 2024Publication date: May 1, 2025Inventors: Arvind KUMAR, Roya BAGHI, Mahendra PAKALA, Thomas KIRSCHENHEITER
-
Publication number: 20250133730Abstract: This specification describes technologies for creating and coupling word lines of a 3D memory cell array to corresponding word lines of a word line connect area. One aspect is a method that includes positioning a memory cell array on a substrate adjacent to a word line connect area, the word line connect area comprising a plurality of layers, the plurality of layers alternating between a first material and a second material; replacing at least a portion of the layers of the first material with a third material; and replacing at least a portion of the layers of the second material with a fourth material, wherein the fourth material forms word lines within the word line connect area and is electrically coupled to memory cell word lines within the memory cell array.Type: ApplicationFiled: October 17, 2024Publication date: April 24, 2025Inventors: WanGee Kim, Michel Frei, Mahendra Pakala, Ellie Y. Yieh
-
Patent number: 12201030Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.Type: GrantFiled: August 8, 2023Date of Patent: January 14, 2025Assignee: Applied Materials, Inc.Inventors: Minrui Yu, Wenhui Wang, Jaesoo Ahn, Jong Mun Kim, Sahil Patel, Lin Xue, Chando Park, Mahendra Pakala, Chentsau Chris Ying, Huixiong Dai, Christopher S. Ngai
-
Publication number: 20240429048Abstract: A semiconductor device and a method for manufacturing thereof. A substrate is provided. At least one silicon layer is formed on top of the substrate. At least one silicon-germanium layer is formed on top of at least one silicon layer. At least one silicon-germanium layer includes at least one n-type dopant. The semiconductor device having at least one silicon layer and at least one silicon-germanium layer is formed.Type: ApplicationFiled: June 17, 2024Publication date: December 26, 2024Applicant: Applied Materials, Inc.Inventors: Ruiying HAO, Thomas KIRSCHENHEITER, Arvind KUMAR, Mahendra PAKALA, Roya BAGHI, Balasubramanian PRANATHARTHIHARAN, Fredrick FISHBURN
-
Publication number: 20240355929Abstract: A memory device including at least one transistor having a dual gate structure comprising a first gate metal and a second gate metal, wherein the first gate metal has a work function of less than 4.55 eV and the second gate metal has a work function greater than 4.55 eV. A method of forming the memory device is also provided.Type: ApplicationFiled: April 12, 2024Publication date: October 24, 2024Inventors: Arvind Kumar, Mahendra Pakala, Sanjeev Manhas, Imtiyaz Ahmad Khan
-
Publication number: 20240332023Abstract: The present disclosure relates to a method of selectively forming a silicide in high-aspect ratio structures by use of a multistep deposition process. A first precursor gas is delivered to a surface disposed within a processing region of a process chamber maintained at a first process pressure, where the substrate is maintained at a first temperature for a first period of time. A purge gas is delivered to for a second period of time after the first period of time has elapsed. A second precursor gas is delivered to the surface of the substrate. The second precursor being maintained at a second process pressure while the substrate is maintained at a second temperature for a third period of time. The purge gas is delivered to the processing region for a fourth period of time after the third period of time has elapsed.Type: ApplicationFiled: March 29, 2024Publication date: October 3, 2024Inventors: Ying-Bing JIANG, In Seok HWANG, Zhijun CHEN, Avgerinos V. GELATOS, Joung Joo LEE, Xianmin TANG, Fredrick FISHBURN, Le ZHANG, Wangee KIM, Mahendra PAKALA
-
Patent number: 12108604Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming stair-like structures with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked memory cell semiconductor devices. In one embodiment, a memory cell device includes a film stack comprising alternating pairs of dielectric layers and conductive structures horizontally formed on a substrate, an opening formed in the film stack, wherein the opening is filled with a channel layer and a center filling layer, and a protective liner layer disposed between the conductive structure and the channel layer.Type: GrantFiled: September 20, 2021Date of Patent: October 1, 2024Assignee: Applied Materials, Inc.Inventors: Jaesoo Ahn, Thomas Kwon, Mahendra Pakala
-
Publication number: 20240306391Abstract: Two-dimensional (2D) materials formed in very thin layers improve the operation of semiconductor devices. However, forming a contact on 2D material tends to damage and penetrate the 2D material. A relatively gentle etch process has been developed that is very selective to the 2D material and allows vertical holes to be etched down to the 2D material without damaging or penetrating the 2D material. A low-power deposition process forms a protective liner when performing the metal fill to further prevent damage to the 2D material when forming the metal contacts in the holes. These processes allow a vertical metal contact to be formed on a planar 2D material or a vertical sidewall contact be formed in a 3D NAND without damaging the 2D material. This increases the contact area, reduces the contact resistance, and improves the performance of the 2D material in the device.Type: ApplicationFiled: March 6, 2024Publication date: September 12, 2024Applicant: Applied Materials, Inc.Inventors: Hao-Ling Tang, Arvind Kumar, Mahendra Pakala, Keith Tatseun Wong, Yi-Hsuan Hsiao, Dongqing Yang, Mark Conrad, Rio Soedibyo, Minrui Yu
-
Patent number: 12075628Abstract: Implementations of the present disclosure generally relate to a memory device. More specifically, implementations described herein generally relate to a SOT-MRAM. The SOT-MRAM includes a memory cell having a magnetic storage layer disposed side by side and in contact with a SOT layer. The side by side magnetic storage layer and the SOT layer can achieve the switching of the magnetic storage layer by reversing the direction of the electrical current flowing through the SOT layer without any additional conditions.Type: GrantFiled: January 16, 2020Date of Patent: August 27, 2024Assignee: Applied Materials, Inc.Inventors: Lin Xue, Chando Park, Jaesoo Ahn, Hsin-wei Tseng, Mahendra Pakala
-
Publication number: 20240237337Abstract: A method includes obtaining a base structure of a three-dimensional (3D) memory device, forming, on the base structure, a blocking layer including a high-k dielectric material, and forming, on the blocking layer, a wordline for the 3D memory device including molybdenum using an atomic layer deposition (ALD) process.Type: ApplicationFiled: October 13, 2023Publication date: July 11, 2024Inventors: Jaesoo Ahn, Jose Alexandro Romero, Kunal Bhatnagar, Mahendra Pakala
-
Publication number: 20240138147Abstract: A method includes obtaining a base structure of a three-dimensional (3D) memory device, forming, on the base structure, a blocking layer including a high-k dielectric material, and forming, on the blocking layer, a wordline for the 3D memory device including molybdenum using an atomic layer deposition (ALD) process.Type: ApplicationFiled: October 12, 2023Publication date: April 25, 2024Inventors: Jaesoo Ahn, Jose Alexandro Romero, Kunal Bhatnagar, Mahendra Pakala
-
Publication number: 20230389441Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.Type: ApplicationFiled: August 8, 2023Publication date: November 30, 2023Applicant: Applied Materials, Inc.Inventors: Minrui YU, Wenhui WANG, Jaesoo AHN, Jong Mun KIM, Sahil PATEL, Lin XUE, Chando PARK, Mahendra PAKALA, Chentsau Chris YING, Huixiong DAI, Christopher S. NGAI
-
Patent number: 11818959Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for hybrid (or called integrated) spin-orbit-torque magnetic spin-transfer-torque magnetic random access memory (SOT-STT MRAM) applications. In one embodiment, the method includes one or more magnetic tunnel junction structures disposed on a substrate, the magnetic tunnel junction structure comprising a first ferromagnetic layer and a second ferromagnetic layer sandwiching a tunneling barrier layer, a spin orbit torque (SOT) layer disposed on the magnetic tunnel junction structure, and a back end structure disposed on the spin orbit torque (SOT) layer.Type: GrantFiled: July 19, 2021Date of Patent: November 14, 2023Assignee: Applied Materials, Inc.Inventors: Hsin-wei Tseng, Chando Park, Jaesoo Ahn, Lin Xue, Mahendra Pakala
-
Patent number: 11764058Abstract: Methods of reducing wafer bowing in 3D DRAM devices are described using a 3-color process. A plurality of film stacks are formed on a substrate surface, each of the film stacks comprises two doped SiGe layers having different dopant amounts and/or Si:Ge ratios and a doped silicon layer. 3D DRAM devices are also described.Type: GrantFiled: September 28, 2021Date of Patent: September 19, 2023Assignee: Applied Materials, Inc.Inventors: Arvind Kumar, Mahendra Pakala, Ellie Y. Yieh, John Tolle, Thomas Kirschenheiter, Anchuan Wang, Zihui Li
-
Patent number: 11723283Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.Type: GrantFiled: May 11, 2020Date of Patent: August 8, 2023Assignee: Applied Materials, Inc.Inventors: Minrui Yu, Wenhui Wang, Jaesoo Ahn, Jong Mun Kim, Sahil Patel, Lin Xue, Chando Park, Mahendra Pakala, Chentsau Chris Ying, Huixiong Dai, Christopher S. Ngai
-
Patent number: 11621393Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate for MRAM applications. In one embodiment, a magnetic tunnel junction (MTJ) device structure includes a junction structure disposed on a substrate, the junction structure comprising a first ferromagnetic layer and a second ferromagnetic layer sandwiching a tunneling barrier layer, a dielectric capping layer disposed on the junction structure, a metal capping layer disposed on the junction structure, and a top buffer layer disposed on the metal capping layer.Type: GrantFiled: December 4, 2020Date of Patent: April 4, 2023Assignee: Applied Materials, Inc.Inventors: Lin Xue, Chando Park, Chi Hong Ching, Jaesoo Ahn, Mahendra Pakala
-
Publication number: 20230102558Abstract: Methods of reducing wafer bowing in 3D DRAM devices are described using a 3-color process. A plurality of film stacks are formed on a substrate surface, each of the film stacks comprises two doped SiGe layers having different dopant amounts and/or Si:Ge ratios and a doped silicon layer. 3D DRAM devices are also described.Type: ApplicationFiled: September 28, 2021Publication date: March 30, 2023Applicant: Applied Materials, Inc.Inventors: Arvind Kumar, Mahendra Pakala, Ellie Y. Yieh, John Tolle, Thomas Kirschenheiter, Anchuan Wang, Zihui Li
-
Patent number: 11552244Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ seed layers of one or more layer of chromium (Cr), NiCr, NiFeCr, RuCr, IrCr, or CoCr, or combinations thereof. These seed layers are used in combination with one or more pinning layers, a first pinning layer in contact with the seed layer can contain a single layer of cobalt, or can contain cobalt in combination with bilayers of cobalt and platinum (Pt), iridium (Ir), nickel (Ni), or palladium (Pd), The second pinning layer can be the same composition and configuration as the first, or can be of a different composition or configuration. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.Type: GrantFiled: March 5, 2021Date of Patent: January 10, 2023Assignee: Applied Materials, Inc.Inventors: Lin Xue, Chi Hong Ching, Rongjun Wang, Mahendra Pakala
-
Patent number: 11522126Abstract: A film stack for a magnetic tunnel comprises a substrate, a magnetic reference layer disposed over the substrate, and a tunnel barrier layer disposed over the magnetic reference layer. The film stack further comprises a magnetic storage layer disposed over the tunnel barrier layer, and a capping layer disposed over the magnetic storage layer. Further, the film stack comprises at least one protection layer disposed between the magnetic reference layer and the tunnel barrier layer and disposed between the magnetic storage layer and the capping layer. Additionally, a material forming the at least one protection layer differs from at least one of a material forming the magnetic reference layer and a material forming the magnetic storage layer.Type: GrantFiled: October 14, 2019Date of Patent: December 6, 2022Assignee: Applied Materials, Inc.Inventors: Lin Xue, Jaesoo Ahn, Sahil Patel, Chando Park, Mahendra Pakala
-
Patent number: 11456301Abstract: Embodiments of the present disclosure generally relate to a storage device. More specifically, embodiments described herein generally relate to a dynamic random-access memory and the method of making thereof. In one embodiment, a cell array includes at least an active region and a field region adjacent to the active region. The active region includes at least one trench, a dielectric layer disposed in the trench, a first conformal layer disposed on the dielectric layer, and a conductive material disposed on the first conformal layer. The field region includes a trench, a dielectric layer disposed in the trench, a second conformal layer disposed on the dielectric layer, and a conductive material disposed on the second conformal layer. The second conformal layer has a different composition than the first conformal layer.Type: GrantFiled: July 16, 2020Date of Patent: September 27, 2022Assignee: Applied Materials, Inc.Inventors: Arvind Kumar, Mahendra Pakala, Sanjeev Manhas, Satendra Kumar Gautam