Patents by Inventor Mahendra Rao

Mahendra Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050177238
    Abstract: An improved bone graft is provided for human implantation, bone graft includes a substrate block of high strength biocompatible material having a selected size and shape to fit the anatomical space, and a controlled porosity analogous to natural bone. The substrate block may be coated with a bio-active surface coating material such as hydroxyapatite or a calcium phosphate to promote bone ingrowth and enhanced bone fusion. Upon implantation, the bone graft provides a spacer element having a desired combination of mechanical strength together with osteoconductivity and osteoinductivity to promote bone ingrowth and fusion, as well as radiolucency for facilitated post-operative monitoring. The bone graft may additionally carry one or more natural or synthetic therapeutic agents for further promoting bone ingrowth and fusion.
    Type: Application
    Filed: January 20, 2005
    Publication date: August 11, 2005
    Inventors: Ashok Khandkar, Bret Berry, Darrel Brodke, Ramaswamy Lakshminarayanan, Mahendra Rao
  • Publication number: 20050125848
    Abstract: A method for isolating human neuroepithelial precursor cells from human fetal tissue by culturing the human fetal cells in fibroblast growth factor and chick embryo extract and immunodepleting from the cultured human fetal cells any cells expressing A2B5, NG2 and eNCAM is provided. In addition, methods for transplanting these cells into an animal are provided. Animals models transplanted with these human neuroepithelial precursor cells and methods for monitoring survival, proliferation, differentiation and migration of the cells in the animal model via detection of human specific markers are also provided.
    Type: Application
    Filed: January 14, 2005
    Publication date: June 9, 2005
    Inventors: Margot Mayer-Proschel, Mahendra Rao, Patrick Tresco, Darin Messina
  • Publication number: 20050049706
    Abstract: An improved bone graft is provided for human implantation, particularly such as a spinal fusion cage for implantation into the inter-vertebral space between two adjacent vertebrae. The improved spinal fusion cage includes a substrate block of high strength biocompatible material having a selected size and shape to fit the anatomical space, and a controlled porosity analogous to natural bone. The substrate block may be coated with a bio-active surface coating material such as hydroxyapatite or a calcium phosphate to promote bone in growth and enhanced bone fusion. Upon implantation, the fusion cage provides a spacer element having a desired combination of mechanical strength together with osteoconductivity and osteoinductivity to promote bone ingrowth and fusion, as well as radiolucency for facilitated post-operative monitoring. The fusion cage may additionally carry one or more natural or synthetic therapeutic agents for further promoting bone ingrowth and fusion.
    Type: Application
    Filed: September 14, 2004
    Publication date: March 3, 2005
    Inventors: Darrel Brodke, Bret Berry, Ashok Khandkar, Ramaswamy Lakshminarayanan, Mahendra Rao
  • Publication number: 20050048041
    Abstract: A method of obtaining and the resulting isolated progenitor or stem cell population of proliferating cells persistently expressing a candidate molecule. Further, novel methods of ex vivo gene product (e.g., protein) production and treating symptoms of neurological or neurodegenerative disorders are also provided.
    Type: Application
    Filed: June 15, 2004
    Publication date: March 3, 2005
    Inventors: Mahendra Rao, Mario Capecchi
  • Publication number: 20050003531
    Abstract: A self-renewing restricted stem cell population has been identified in developing (embryonic day 13.5) spinal cords that can differentiate into multiple neuronal phenotypes, but cannot differentiate into glial phenotypes. This neuronal-restricted precursor (NRP) expresses highly polysialated or embryonic neural cell adhesion molecule (E-NCAM) and is morphologically distinct from neuroepithelial stem cells (NEP cells) and spinal glial progenitors derived from embryonic day 10.5 spinal cord. NRP cells self renew over multiple passages in the presence of fibroblast growth factor (FGF) and neurotrophin 3 (NT-3) and express a characteristic subset of neuronal epitopes. When cultured in the presence of RA and the absence of FGF, NRP cells differentiate into GABAergic, glutaminergic, and cholinergic immunoreactive neurons. NRP cells can also be generated from multipotent NEP cells cultured from embryonic day 10.5 neural tubes.
    Type: Application
    Filed: August 4, 2004
    Publication date: January 6, 2005
    Inventors: Mahendra Rao, Margot Mayer-Proschel, Anjali Kalyani