Patents by Inventor Maher Qabar

Maher Qabar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938191
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: March 26, 2024
    Assignee: GENEVANT SCIENCES GMBH
    Inventors: Sean D. Monahan, Michael S. Declue, Pierrot Harvie, Russell N. Johnson, Amber E. Paschal, Mary G. Prieve, Debashish Roy, Charbel Diab, Michael E. Houston, Jr., Anna Galperin, Maher Qabar
  • Publication number: 20210023235
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Application
    Filed: May 1, 2020
    Publication date: January 28, 2021
    Applicant: GENEVANT SCIENCES GMBH
    Inventors: Sean D. MONAHAN, Michael S. DeCLUE, Pierrot HARVIE, Russell N. JOHNSON, Amber E. PASCHAL, Mary G. PRIEVE, Debashish ROY, Charbel DIAB, Michael E. HOUSTON, JR., Anna GALPERIN, Maher QABAR
  • Patent number: 10660970
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 26, 2020
    Assignee: Genevant Sciences GmbH
    Inventors: Sean D. Monahan, Michael S. DeClue, Pierrot Harvie, Russell N. Johnson, Amber E. Paschal, Mary G. Prieve, Debashish Roy, Charbel Diab, Michael E. Houston, Jr., Anna Galperin, Maher Qabar
  • Patent number: 10646582
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 12, 2020
    Assignee: Genevant Sciences GmbH
    Inventors: Sean D. Monahan, Michael S. DeClue, Pierrot Harvie, Russell N. Johnson, Amber E. Paschal, Mary G. Prieve, Debashish Roy, Charbel Diab, Michael E. Houston, Jr., Anna Galperin, Maher Qabar
  • Publication number: 20190388551
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 26, 2019
    Applicant: GENEVANT SCIENCES GMBH
    Inventors: Sean D. MONAHAN, Michael S. DeCLUE, Pierrot HARVIE, Russell N. JOHNSON, Amber E. PASCHAL, Mary G. PRIEVE, Debashish ROY, Charbel DIAB, Michael E. HOUSTON, Anna GALPERIN, Maher QABAR
  • Publication number: 20180243433
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Application
    Filed: November 30, 2017
    Publication date: August 30, 2018
    Inventors: Sean D. Monahan, Michael S. DeClue, Pierrot Harvie, Russell N. Johnson, Amber E. Paschal, Mary G. Prieve, Debashish Roy, Charbel Diab, Michael E. Houston, JR., Anna Galperin, Maher Qabar
  • Patent number: 9867885
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 16, 2018
    Assignee: PhaseRx, Inc.
    Inventors: Sean D Monahan, Michael S Declue, Pierrot Harvie, Russell N Johnson, Amber E Paschal, Mary G Prieve, Debashish Roy, Charbel Diab, Michael E Houston, Jr., Anna Galperin, Maher Qabar
  • Publication number: 20160206750
    Abstract: Described herein are block copolymers, and methods of making and utilizing such copolymers. The described block copolymers are disruptive of a cellular membrane, including an extracellular membrane, an intracellular membrane, a vesicle, an organelle, an endosome, a liposome, or a red blood cell. Preferably, in certain instances, the block copolymer disrupts the membrane and enters the intracellular environment. In specific examples, the block copolymer is endosomolytic and capable of delivering an oligonucleotide (e.g., an mRNA) to a cell. Compositions comprising a block copolymer and an oligonucleotide (e.g., an mRNA) are also disclosed.
    Type: Application
    Filed: July 30, 2014
    Publication date: July 21, 2016
    Inventors: Sean D MONAHAN, Michael S DECLUE, Pierrot HARVIE, Russell N JOHNSON, Amber E PASCHAL, Mary G PRIEVE, Debashish ROY, Charbel DIAB, Michael E HOUSTON, Jr., Anna GALPERIN, Maher QABAR
  • Patent number: 7829737
    Abstract: The present invention provides compounds of Formula (I) and Formula (II) that are useful for modulating the biological activity of the protein tyrosine phosphatase-1b (PTP1B) enzyme. Compounds of this invention can be used to treat diseases and/or conditions in which the PTP1B enzyme is a factor. Such diseases and/or conditions include, but are not limited to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, obesity, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, atherosclerosis, vascular restenosis, inflammatory bowel disease, pancreatitis, adipose cell tumors, adipose cell carcinoma, liposarcoma, dyslipidemia, cancer, and neurodegenerative diseases.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: November 9, 2010
    Assignee: Ceptyr, Inc.
    Inventors: Mark Arnold Thomas Blaskovich, Ted Baughman, Thomas Little, Maher Qabar, Lauri Marie Schultz, Feng Hong, William Patt, Gangadhar Nagula, Jennifer Lynn Gage, James Jeffry Howbert
  • Publication number: 20090131374
    Abstract: The present invention provides compounds of Formula (I) and Formula (II) that are useful for modulating the biological activity of the protein tyrosine phosphatase-1b (PTP1B) enzyme. Compounds of this invention can be used to treat diseases and/or conditions in which the PTP1B enzyme is a factor. Such diseases and/or conditions include, but are not limited to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, obesity, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, atherosclerosis, vascular restenosis, inflammatory bowel disease, pancreatitis, adipose cell tumors, adipose cell carcinoma, liposarcoma, dyslipidemia, cancer, and neurodegenerative diseases.
    Type: Application
    Filed: January 30, 2009
    Publication date: May 21, 2009
    Applicant: CEPTYR, INC.
    Inventors: Mark Arnold Thomas Blaskovich, Ted Baughman, Thomas Little, William Patt, Maher Qabar, Lauri Marie Schultz, Feng Hong, Gangadhar Nagula, Jennifer Lynn Gage, James Jeffry Howbert
  • Patent number: 7504389
    Abstract: The present invention provides compounds of Formula (I) and Formula (II) that are useful for modulating the biological activity of the protein tyrosine phosphatase-1b (PTP1B) enzyme. Compounds of this invention can be used to treat diseases and/or conditions in which the PTP1B enzyme is a factor. Such diseases and/or conditions include, but are not limited to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, obesity, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, atherosclerosis, vascular restenosis, inflammatory bowel disease, pancreatitis, adipose cell tumors, adipose cell carcinoma, liposarcoma, dyslipidemia, cancer, and neurodegenerative diseases.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: March 17, 2009
    Assignee: Ceptyr, Inc.
    Inventors: Mark Arnold Thomas Blaskovich, Ted Baughman, Thomas Little, William Patt, Maher Qabar, Lauri Mario Schultz, Gangadhar Nagula, Jennifer Lynn Gage, James Jeffry Howbert
  • Publication number: 20080161592
    Abstract: The present invention provides compounds of Formula (I) and Formula (II) that are useful for modulating the biological activity of the protein tyrosine phosphatase-1b (PTP1B) enzyme. Compounds of this invention can be used to treat diseases and/or conditions in which the PTP1B enzyme is a factor. Such diseases and/or conditions include, but are not limited to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, obesity, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, atherosclerosis, vascular restenosis, inflammatory bowel disease, pancreatitis, adipose cell tumors, adipose cell carcinoma, liposarcoma, dyslipidemia, cancer, and neurodegenerative diseases.
    Type: Application
    Filed: March 6, 2008
    Publication date: July 3, 2008
    Applicant: CEPTYR, INC.
    Inventors: Mark Arnold Thomas Blaskovich, Ted Baughman, Thomas Little, William Patt, Maher Qabar, Lauri Marie Schultz, Feng Hong, Gangadhar Nagula, Jennifer Lynn Gage, James Jeffrey Howbert
  • Publication number: 20060293372
    Abstract: ?-sheet mimetics and methods relating to the same are disclosed. The ?-sheet mimetics have utility as protease and kinase inhibitors, as well as inhibitors of transcription factors and protein-protein binding interactions. Methods of the invention include administration of a ?-sheet mimetic, or use of the same for the manufacture of a medicament for treatment of a variety of conditions associated with the targeted protease, kinase, transcription factor and/or protein-protein binding interaction.
    Type: Application
    Filed: February 5, 2004
    Publication date: December 28, 2006
    Applicant: Myriad Genetics, Inc.
    Inventors: Maher Qabar, Michael McMillan, Michael Kahn, John Tulinsky, Cyprian Ogbu, Jessymol Mathew
  • Publication number: 20060142250
    Abstract: The present invention provides compounds of Formula (I) and Formula (II) that are useful for modulating the biological activity of the protein tyrosine phosphatase-1b (PTP1B) enzyme. Compounds of this invention can be used to treat diseases and/or conditions in which the PTP1B enzyme is a factor. Such diseases and/or conditions include, but are not limited to, Type 1 diabetes, Type 2 diabetes, inadequate glucose tolerance, insulin resistance, obesity, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, atherosclerosis, vascular restenosis, inflammatory bowel disease, pancreatitis, adipose cell tumors, adipose cell carcinoma, liposarcoma, dyslipidemia, cancer, and neurodegenerative diseases.
    Type: Application
    Filed: November 15, 2005
    Publication date: June 29, 2006
    Inventors: Mark Blaskovich, Ted Baughman, Thomas Little, William Patt, Maher Qabar, Lauri Schultz, Feng Hong, Gangadhar Nagula, Jennifer Gage, James Howbert
  • Publication number: 20050250780
    Abstract: Reverse-turn mimetics and methods relating to the same having the following structure are disclosed: including pharmaceutically acceptable salts and stereoisomers thereof, wherein R1, R2, R3 and R4 are as defined herein. Such compounds have utility over a wide range of applications, including use as diagnostic and therapeutic agents. In particular, compounds of this invention, and pharmaceutical compositions containing such compounds, are neurokinin (tachykinin) antagonists. Libraries containing the reverse-turn mimetics of this invention are also disclosed.
    Type: Application
    Filed: April 18, 2005
    Publication date: November 10, 2005
    Applicant: Myriad Genetics, Incorporated
    Inventors: Maher Qabar, Marcin Stasiak, Jessymol Mathew, Thomas Little, Danwen Huang