Patents by Inventor Mahesh R. Junnarkar

Mahesh R. Junnarkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11215557
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: January 4, 2022
    Assignee: Abbott Laboratories
    Inventors: Svitlana Y. Berezhna, JrHung T. Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Publication number: 20210131962
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 6, 2021
    Inventors: Svitlana Y. Berezhna, JrHung T. Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Patent number: 10866187
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 15, 2020
    Assignee: Abbott Laboratories
    Inventors: Svitlana Y. Berezhna, JrHung T Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Publication number: 20200309693
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 1, 2020
    Inventors: Svitlana Y. Berezhna, JrHung T Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Publication number: 20200292439
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Application
    Filed: April 15, 2020
    Publication date: September 17, 2020
    Inventor: Mahesh R. Junnarkar
  • Patent number: 10648909
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 12, 2020
    Assignee: Abbott Laboratories
    Inventors: Svitlana Y. Berezhna, JrHung T. Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Patent number: 10648898
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 12, 2020
    Assignee: Abbott Laboratories
    Inventor: Mahesh R. Junnarkar
  • Publication number: 20190195775
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 27, 2019
    Inventor: Mahesh R. Junnarkar
  • Patent number: 10190962
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: January 29, 2019
    Assignee: Abbott Laboratories
    Inventor: Mahesh R. Junnarkar
  • Publication number: 20180340888
    Abstract: Provided are methods of assessing the cleanliness of a flow cell of a flow cytometric system. The provided methods include computing a ratio of post-flow cell and pre-flow cell light beam intensities and using such a ratio to assess the cleanliness of the flow cell. Flow cytometric systems capable of monitoring the cleanliness of a flow cell contained within the system are also provided.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 29, 2018
    Inventors: Svitlana Y. Berezhna, JrHung T. Tsai, David Spalding, Mahesh R. Junnarkar, Chia-Fa Hsu
  • Publication number: 20170219476
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 3, 2017
    Inventor: Mahesh R. Junnarkar
  • Patent number: 9606043
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 28, 2017
    Assignee: Abbott Laboratories
    Inventor: Mahesh R. Junnarkar
  • Publication number: 20160153887
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 2, 2016
    Inventor: Mahesh R. Junnarkar
  • Patent number: 9201005
    Abstract: Flow cytometer systems are provided having intermediate angle scatter detection capability. In some aspects, systems are provided that include an intermediate angle scatter (IAS) light detector positioned to measure intermediate angle scatter emitted from a flow cytometer. The system further includes a mask disposed across a portion of the IAS light detector and positioned between the flow cell and the IAS light detector to cover at least a central portion of the IAS light detector so as to block a diffraction pattern observed at the detector. In some instances, the diffraction pattern is created by a flat beam profile irradiating the sample. Methods are also provided for configuring a flow cytometer to block a diffraction pattern created by (1) a flat laser beam profile irradiating a flow cytometer liquid sample, or (2) a mismatched index of refraction between a sheath fluid and a liquid sample in a flow cytometer.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 1, 2015
    Assignee: Abbott Laboratories
    Inventor: Mahesh R. Junnarkar
  • Patent number: 8400632
    Abstract: A method for increasing the throughput and/or the precision of a flow cytometer, or a hematology analyzer employing a flow cytometer, and for further reducing the complexity of such a cytometer or analyzer. The system and method includes utilizing the technique of laser rastering in combination with a lysis-free single-dilution method.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 19, 2013
    Assignee: Abbott Laboratories
    Inventors: Giacomo Vacca, Richard G. Kendall, Norman R. Goldblatt, Michael W. Yee, Mahesh R. Junnarkar
  • Publication number: 20120270306
    Abstract: A method for increasing the throughput and/or the precision of a flow cytometer, or a hematology analyzer employing a flow cytometer, and for further reducing the complexity of such a cytometer or analyzer. The system and method includes utilizing the technique of laser rastering in combination with a lysis-free single-dilution method.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 25, 2012
    Applicant: ABBOTT LABORATORIES
    Inventors: Giacomo Vacca, Richard G. Kendall, Norman R. Goldblatt, Michael W. Yee, Mahesh R. Junnarkar
  • Patent number: 8159670
    Abstract: A method for increasing the throughput, or the precision, or both the precision and the throughput, of a flow cytometer, or of a hematology analyzer employing a flow cytometer, and for further reducing the complexity of such a cytometer or analyzer, by utilizing the technique of laser rastering in combination with a lysis-free single-dilution method. Laser rastering involves sweeping a laser beam across a flowing sample stream in a hematology analyzer. A lysis-free single-dilution method involves performing all the flow cytometer measurements on a sample using a single aliquot, a single lysis-free reagent solution, a single dilution, and a single pass of said dilution through the measurement apparatus.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 17, 2012
    Assignee: Abbott Laboratories
    Inventors: Giacomo Vacca, Richard G. Kendall, Norman R. Goldblatt, Michael W. Yee, Mahesh R. Junnarkar
  • Publication number: 20090142765
    Abstract: A method for increasing the throughput, or the precision, or both the precision and the throughput, of a flow cytometer, or of a hematology analyzer employing a flow cytometer, and for further reducing the complexity of such a cytometer or analyzer, by utilizing the technique of laser rastering in combination with a lysis-free single-dilution method. Laser rastering involves sweeping a laser beam across a flowing sample stream in a hematology analyzer. A lysis-free single-dilution method involves performing all the flow cytometer measurements on a sample using a single aliquot, a single lysis-free reagent solution, a single dilution, and a single pass of said dilution through the measurement apparatus.
    Type: Application
    Filed: October 31, 2008
    Publication date: June 4, 2009
    Applicant: ABBOTT LABORATORIES
    Inventors: Giacomo Vacca, Richard G. Kendall, Norman R. Goldblatt, Michael W. Yee, Mahesh R. Junnarkar
  • Patent number: 7317517
    Abstract: A waveguide under test can be exposed to a light signal whose polarization rotates between the vertical and horizontal polarizations. The intensity detected at a photodetector can be separated into AC and DC components. The AC components may be utilized to derive a characteristics which is indicative of birefringence of the waveguide. If the light signal is scanned over the waveguide under test, a measure of the birefringence at each position along the waveguide may be determined.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: January 8, 2008
    Assignee: Intel Corporation
    Inventors: Mahesh R. Junnarkar, Bidhan P. Chaudhuri
  • Patent number: 6898347
    Abstract: An optical network may include a detector for detecting the power of each of a plurality of channels of a wavelength division multiplexed optical signal in one embodiment of the present invention. Each channel may be conveyed to an interface underneath a detector by way of a core formed in the substrate. The interface may include a trench with one side surface angled to form a reflector to reflect light upwardly to be detected by the detector. The trench may be filled with a convex microlens.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 24, 2005
    Assignee: Intel Corporation
    Inventors: Mahesh R. Junnarkar, Anirban Bandyopadhyay