Patents by Inventor Maheshkumar Ramniklal Gandhi

Maheshkumar Ramniklal Gandhi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9675098
    Abstract: The present invention relates to stable and white iron fortification and iron+iodine double fortification agents, their preparation and use in fortification of salt. These agents help overcome the normal difficulties encountered in iron and iodine fortification such as low iodine stability on storage, development of colour and odour, and use of unwanted additives to impart stability. In one of the invented products, both iron and iodine coexist in stable manner in the same matrix which allow for a more uniform distribution of iodine. The process of preparation is demonstrated to be scalable and utilizes commonly available raw materials which would enable the products to be synthesized in affordable manner.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 13, 2017
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jatin Rameshchandra Chunawala, Pushpito Kumar Ghosh, Maheshkumar Ramniklal Gandhi, Satish Hariray Mehta, Mrunalben Vinodray Sheth, Dibyendu Mondal
  • Patent number: 9567233
    Abstract: Development of a novel process for preparation of synthetic hydrotalcite using three industrial wastes such as aluminum chloride waste-generated in any of reaction where anhydrous aluminum chloride is used as Leawis acid catalyst such as Freidel Craft reaction, bittern containing magnesium compounds generated in solar salt work using brines such as sea brine and subsoil brines containing magnesium, and ammonium carbonate solution generated in organic pigment industries such as producing copper pthalo cyanin green. The process involves preparation of aluminum precursor and removing metallic impurities present in Aluminum hydroxide prepared from aluminum chloride containing waste, preparation of magnesium precursor, mixing the precursors, hydrothermally treating the mixture and adding surface modifying agents followed by filtration and drying.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: February 14, 2017
    Assignee: Council of Scientific & Industrial Research
    Inventors: Maheshkumar Ramniklal Gandhi, Jatin Rameshchandra Chunawala, Satish Hariray Mehta
  • Patent number: 9517943
    Abstract: The present invention provides an integrated process for the recovery of sulphate of potash (SOP) and ammonium sulphate fertilizers from kainite mixed salt dispensing with magnesium hydroxide production. The process comprises, among other steps, producing calcium chloride from calcium carbonate through addition of hydrochloric acid; the calcium chloride being used for desulphatation of schoenite end liquor (SEL) obtained as liquid stream during decomposition of kainite mixed salt with water to obtain solid schoenite; using the resultant gypsum and carbon dioxide together with ammonia for the production of ammonium sulphate liquor and solid calcium carbonate, the latter being recycled in the process; producing carnallite from desulphated SEL; decomposing the carnallite to recover carnallite decomposed product (CDP) which is further refined under ambient conditions to obtain pure potassium chloride (KCl) utilized in the preparation of SOP from the schoenite.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: December 13, 2016
    Assignee: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
    Inventors: Pushpito Kumar Ghosh, Pratyush Maiti, Maheshkumar Ramniklal Gandhi
  • Patent number: 9193601
    Abstract: A method of producing soda ash and ammonium sulphate by recycling by-products of Merseberg and Solvay processes includes treating brine with soda ash distiller waste for desulphatation of the brine to obtain gypsum, recovering pure salt from the desulphated brine and utilizing it in manufacture of soda ash in a Solvay process, washing the gypsum and reacting it with liquor ammonia and carbon dioxide to obtain CaCO3 and ammonium sulphate, separating the CaCO3 from the ammonium sulphate solution and recovering solid ammonium sulphate, washing the CaCO3 followed by calcination to generate CO2 and lime, recycling the CO2 in the Solvay process to obtain soda ash, recycling the lime with ammonium chloride generated in the Solvay process to recover ammonia and obtain distiller waste containing CaCl2 as a by-product, recycling the by-product distiller waste for the desulphatation of the brine, and recycling the ammonia recovered.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 24, 2015
    Assignee: Council of Scientific & Industrial Research
    Inventors: Pushpito Kumar Ghosh, Haresh Mahipatlal Mody, Rajesh Shantilal Somani, Pratyush Maiti, Maheshkumar Ramniklal Gandhi, Hari Chand Bajaj, Jatin Rameshchandra Chunawala, Sumesh Chandra Upadhyay
  • Publication number: 20150225250
    Abstract: The present invention provides an integrated process for the recovery of sulphate of potash (SOP) and ammonium sulphate fertilizers from kainite mixed salt dispensing with magnesium hydroxide production. The process comprises, among other steps, producing calcium chloride from calcium carbonate through addition of hydrochloric acid; the calcium chloride being used for desulphatation of schoenite end liquor (SEL) obtained as liquid stream during decomposition of kainite mixed salt with water to obtain solid schoenite; using the resultant gypsum and carbon dioxide together with ammonia for the production of ammonium sulphate liquor and solid calcium carbonate, the latter being recycled in the process; producing carnallite from desulphated SEL; decomposing the carnallite to recover carnallite decomposed product (CDP) which is further refined under ambient conditions to obtain pure potassium chloride (KCl) utilized in the preparation of SOP from the schoenite.
    Type: Application
    Filed: September 2, 2013
    Publication date: August 13, 2015
    Inventors: Pushpito Kumar Ghosh, Pratyush Maiti, Maheshkumar Ramniklal Gandhi
  • Publication number: 20150218009
    Abstract: Development of a novel process for preparation of synthetic hydrotalcite using three industrial wastes such as aluminium chloride waste-generated in any of reaction where anhydrous aluminium chloride is used as Leawis acid catalyst such as Freidel Craft reaction, bittern containing magnesium compounds generated in solar salt work using brines such as sea brine and subsoil brines containing magnesium, and ammonium carbonate solution generated in organic pigment industries such as producing copper pthalo cyanin green. The process involves preparation of aluminium precursor and removing metallic impurities present in Aluminium hydroxide prepared from aluminium chloride containing waste, preparation of magnesium precursor, mixing the precursors, hydrothermally treating the mixture and adding surface modifying agents followed by filtration and drying.
    Type: Application
    Filed: September 2, 2013
    Publication date: August 6, 2015
    Applicant: Council of Scientific & Industrial Research
    Inventors: Maheshkumar Ramniklal Gandhi, Jatin Rameshchandra Chunawala, Satish Hariray Mehta
  • Publication number: 20150093309
    Abstract: A method of producing soda ash and ammonium sulphate by recycling by-products of Merseberg and Solvay processes includes treating brine with soda ash distiller waste for desulphatation of the brine to obtain gypsum, recovering pure salt from the desulphated brine and utilizing it in manufacture of soda ash in a Solvay process, washing the gypsum and reacting it with liquor ammonia and carbon dioxide to obtain CaCO3 and ammonium sulphate, separating the CaCO3 from the ammonium sulphate solution and recovering solid ammonium sulphate, washing the CaCO3 followed by calcination to generate CO2 and lime, recycling the CO2 in the Solvay process to obtain soda ash, recycling the lime with ammonium chloride generated in the Solvay process to recover ammonia and obtain distiller waste containing CaCl2 as a by-product, recycling the by-product distiller waste for the desulphatation of the brine, and recycling the ammonia recovered.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Inventors: Pushpito Kumar Ghosh, Haresh Mahipatlal Mody, Rajesh Shantilal Somani, Pratyush Maiti, Maheshkumar Ramniklal Gandhi, Hari Chand Bajaj, Jatin Rameshchandra Chunawala, Sumesh Chandra Upadhyay
  • Patent number: 8957239
    Abstract: A highly pure 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil) has been prepared in high yield from 4-hydroxybenzonitrile using eco-friendly brominating reagent comprising of 2:1 mole ratio of bromide to bromate salts in aqueous acidic medium without any catalyst under ambient conditions with no work up procedure. The product 3,5-dibromo-4-hydroxybenzonitrile was obtained in 91-99% yield with melting point 189-191° C. and more than 99% purity by gas chromatographic analysis without any purification.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: February 17, 2015
    Assignee: Council of Scientific and Industrial Research
    Inventors: Subbarayappa Adimurthy, Gadde Ramachandraiah, Girdhar Joshi, Rajendra Patil, Maheshkumar Ramniklal Gandhi, Mallampati Subbareddy, Pratyush Maiti
  • Publication number: 20150037466
    Abstract: The present invention relates to stable and white iron fortification and iron+iodine double fortification agents, their preparation and use in fortification of salt. These agents help overcome the normal difficulties encountered in iron and iodine fortification such as low iodine stability on storage, development of colour and odour, and use of unwanted additives to impart stability. In one of the invented products, both iron and iodine coexist in stable manner in the same matrix which allow for a more uniform distribution of iodine. The process of preparation is demonstrated to be scalable and utilizes commonly available raw materials which would enable the products to be synthesized in affordable manner.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 5, 2015
    Applicant: Council of Scientific & Industrial Research
    Inventors: Jatin Rameshchandra Chunawala, Pushpito Kumar Ghosh, Maheshkumar Ramniklal Gandhi, Satish Hariray Mehta, Mrunalben Vinodray Sheth, Dibyendu Mondal
  • Patent number: 8721999
    Abstract: Kainite mixed salt is treated with water to obtain solid schoenite and a schoenite end liquor. The latter is desulphated using recycled CaCl2 and thereafter evaporated to obtain camallite crystals, from which KCl is recovered, and a liquor rich in MgCl2. Gypsum produced during desulphatation is reacted with aqueous ammonia and CO2 to produce ammonium sulphate and calcium carbonate. The calcium carbonate is calcined to obtained CaO and CO2. The CaO is slaked and reacted with the MgCl2-rich liquor generated above to produce slurry of Mg(OH)2 in aqueous CaCl2. To this surface modifying agent is added while hot and, after cooling, the slurry yields surface modified Mg(OH)2. The filtrate rich in CaCl2 is recycled for desulphatation process above. The solid surface modified Mg(OH)2 may he calcined to produced MgO. The schoenite and KCl are reacted to produce solid sulphate of potash.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 13, 2014
    Assignee: Council of Scientific and Industrial Research
    Inventors: Pushpito Kumar Ghosh, Haresh Mahipatlal Mody, Jatin Rameshchandra Chunawala, Maheshkumar Ramniklal Gandhi, Hari Chand Bajaj, Pratyush Maiti, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Upendra Padmakant Saraiya
  • Publication number: 20130331596
    Abstract: A highly pure 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil) has been prepared in high yield from 4-hydroxybenzonitrile using eco-friendly brominating reagent comprising of 2:1 mole ratio of bromide to bromate salts in aqueous acidic medium without any catalyst under ambient conditions with no work up procedure. The product 3,5-dibromo-4-hydroxybenzonitrile was obtained in 91-99% yield with melting point 189-191° C. and more than 99% purity by gas chromatographic analysis without any purification.
    Type: Application
    Filed: February 25, 2010
    Publication date: December 12, 2013
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Subbarayappa Adimurthy, Gadde Ramachandraiah, Girdhar Joshi, Rajendra Patil, Maheshkumar Ramniklal Gandhi, Mallampati Subrareddy, Pratyush Maiti
  • Publication number: 20130315805
    Abstract: The present invention provides an integrated process for the recovery of sulphate of potash (SOP), ammonium sulphate and surface modified magnesium hydroxide and/or magnesium oxide utilizing kainite mixed salt and ammonia as the only consumable raw materials. The process involves treating kainite mixed salt with water to obtain solid schoenite and a schoenite end liquor. The latter is desulphated using CaCl2 generated in the process itself and thereafter evaporated to obtain carnallite crystals from which KCl is recovered while the liquor rich in MgCl2 serves as a source of MgCL. The gypsum produced during desulphatation is reacted with aqueous ammonia and CO2 to produce ammonium sulphate and calcium carbonate. The calcium carbonate so obtained is then calcined to obtained CaO and CO2. The CaO is then slaked in decarbonated water and reacted with the MgCl2-rich liquor generated above to produce slurry of Mg(OH)2 in aqueous CaCl2.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 28, 2013
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Pushpito Kumar Ghosh, Haresh Mahipatlal Mody, Jatin Rameshchandra Chunawala, Maheshkumar Ramniklal Gandhi, Hari Chand Bajaj, Pratyush Maiti, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Upendra Padmakant Saraiya
  • Patent number: 7811535
    Abstract: The present invention provides an improved process for the preparation of MgO of high purity >99% from salt bitterns via intermediate formation of Mg(OH)2 obtained from the reaction of MgCl2 and lime, albeit indirectly, i.e., MgCl2 is first reacted with NH3 in aqueous medium and the slurry is then filtered with ease. The resultant NH4Cl-containing filtrate is then treated with any lime, to regenerate NH3 while the lime itself gets transformed into CaCl2 that is used for desulphatation of bittern so as to recover carnallite and thereafter MgCl2 of desired quality required in the present invention. The crude Mg(OH)2 is dried and calcined directly to produce pure MgO, taking advantage of the fact that adhering impurities in the Mg(OH)2 either volatilize away or get transformed into the desired product, i.e., MgO.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 12, 2010
    Assignee: Council of Scientific & Industrial Research
    Inventors: Pushpito Kumar Ghosh, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Maheshkumar Ramniklal Gandhi, Rohit Harshadrai Dave, Kaushik Jethalal Langalia, Vadakke Puthoor Mohandas
  • Patent number: 7771682
    Abstract: The process provides for the preparation of MgO from the reaction of magnesium salt and alkali/lime. The crude Mg(OH)2 is directly calcined and then treated with water to disintegrate the mass spontaneously to yield a slurry and dissolve away the soluble salts. This slurry is much easier to filter and wash than the original Mg(OH)2 slurry, which helps to speed up the purification operation and also conserve fresh water. Another important advantage of the present method is that even pasty or dough like reaction products that are processed using dough mixers and similar equipment can be worked up with ease. There is no compromise in the quality of MgO achieved in this manner.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: August 10, 2010
    Assignee: Council of Scientific and Industrial Research
    Inventors: Pushpito Kumar Ghosh, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Maheshkumar Ramniklal Gandhi, Rohit Harshadrai Dave, Kaushik Jethalal Langalia, Vadakke Puthoor Mohandas
  • Publication number: 20100172812
    Abstract: The present invention provides an improved process for the preparation of MgO of high purity >99% from salt bitterns via intermediate formation of Mg(OH)2 obtained from the reaction of MgCl2 and lime, albeit indirectly, i.e., MgCl2 is first reacted with NH3 in aqueous medium and the slurry is then filtered with ease. The resultant NH4Cl-containing filtrate is then treated with any lime, to regenerate NH3 while the lime itself gets transformed into CaCl2 that is used for desulphatation of bittern so as to recover carnallite and thereafter MgCl2 of desired quality required in the present invention. The crude Mg(OH)2 is dried and calcined directly to produce pure MgO, taking advantage of the fact that adhering impurities in the Mg(OH)2 either volatilize away or get transformed into the desired product, i.e., MgO.
    Type: Application
    Filed: March 9, 2009
    Publication date: July 8, 2010
    Inventors: Pushpito Kumar Ghosh, Himanshu Labhshanker Joshi, Hasina Hajibahi Deraiya, Maheshkumar Ramniklal Gandhi, Rohit Harshadrai Dave, Kaushik Jethalal Langalia, Vadakke Puthoor Mohandas
  • Publication number: 20070191214
    Abstract: The process provides for the preparation of MgO from the reaction of magnesium salt and alkali/lime. The crude Mg(OH)2 is directly calcined and then treated with water to disintegrate the mass spontaneously to yield a slurry and dissolve away the soluble salts. This slurry is much easier to filter and wash than the original Mg(OH)2 slurry, which helps to speed up the purification operation and also conserve fresh water. Another important advantage of the present method is that even pasty or dough like reaction products that are processed using dough mixers and similar equipment can be worked up with ease. There is no compromise in the quality of MgO achieved in this manner.
    Type: Application
    Filed: March 15, 2006
    Publication date: August 16, 2007
    Inventors: Pushpito Kumar Ghosh, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Maheshkumar Ramniklal Gandhi, Rohit Harshadrai Dave, Kaushik Jethalal Langalia, Vadakke Puthoor Mohandas
  • Patent number: 7041268
    Abstract: The present invention is directed to a novel integrated process for the recovery of sulphate of potash (SOP) from sulphate rich bittern. The process requires bittern and lime as raw materials. Kainite type mixed salt is obtained by fractional crystallization of the bittern, and is converted to schoenite which is subsequently reacted with muriate of potash (MOP) for its conversion to SOP. End liquor from kainite to schoenite conversion (SEL) is desulphated and supplemented with MgCl2 using end bittern generated in the process of making carnallite. Decomposed carnallite liquor produced is reacted with hydrated lime for preparing CaCl2 solution and high purity Mg(OH)2 having low boron content. It is shown that the liquid streams containing potash are recycled in the process, and the recovery of potash in the form of SOP is quantitative.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: May 9, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Pushpito Kumar Ghosh, Kaushik Jethalal Langalia, Maheshkumar Ramniklal Gandhi, Rohit Harshadray Dave, Himanshu Labhshanker Joshi, Rajinder Nath Vohra, Vadakke Puthoor Mohandas, Sohan Lal Daga, Koushik Halder, Hasina Hajibhai Deraiya, Ramjibhai Devjibhai Rathod, Abdulhamid Usmanbhai Hamidani
  • Patent number: 7014832
    Abstract: The present invention relates to recovery of industrial grade potassium chloride and low sodium edible salt from bittern as part of an integrated process. The process comprises, mixing low sulphate concentrated feed bittern (a by-product of salt industry) of density 31.5 to 32.5° Be (sp.gr. 1.277–1.289) with high density end bittern of density 36.5 to 37.5° Be? (sp.gr. 1.336–1.35), thereby producing low sodium carnallite, from which industrial grade potassium chloride is produced. The resultant bittern is evaporated in forced evaporation system, thereby producing crude carnallite, from which low sodium salt that would be beneficial to persons suffering from hypertension is produced. When sulphate-rich bittern is used, such bittern is desulphated with CaCl2 that is generated from carnallite decomposed liquor through reaction with lime, and wherein low B2O3-containing Mg(OH)2 is a by-product. The entire content of potassium in feed bittern is recovered in the process of the invention.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: March 21, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Rajinder Nath Vohra, Pushpito Kumar Ghosh, Ashokkumar Bhagvanjibhai Kasundra, Himanshu Labhshanker Joshi, Rohit Harshadray Dave, Maheshkumar Ramniklal Gandhi, Kaushik Jethalal Langalia, Koushik Halder, Sohan Lal Daga, Ramjibhai Devjibhai Rathod, Hasina Hajibhai Deraiya, Purashottambhai Ravajibhai Jadav, Vadakke Puthoor Mohandas, Abdulhamid Usmanbhai Hamidani
  • Patent number: 6890509
    Abstract: A new process for recovery of Low Sodium Salt from bittern has been described in the present invention, the said process comprising desulphatation of bittern (by-product of salt industry), evaporation of bittern in solar pans and processing of solid mixture with water to produce a mixture of sodium and potassium chlorides and optionally preparing “free flowing” and iodized, by known techniques.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: May 10, 2005
    Assignee: Council of Scientific & Industrial Research
    Inventors: Rajinder Nath Vohra, Pushpito Kumar Ghosh, Maheshkumar Ramniklal Gandhi, Himanshu Labhshanker Joshi, Hasina Hajibhai Deriya, Rohit Harshadray Dave, Koushik Halder, Kishorkumar Manmohandas Majeethia, Sohan Lal Daga, Vadakke Puthoor Mohandas, Rahul Jasvantrai Sanghavi
  • Patent number: 6740253
    Abstract: The present invention relates to a non-hazardous brominating reagent from an aqueous alkaline bromine byproduct solution obtained from bromine recovery plant and containing 25 to 35% bromine dissolved in aqueous lime or sodium hydroxide containing alkali bromide and alkali bromate mixture having bromide to bromate stoichiometric ratio in the range of 5:1 to 5.1:1 or 2:1 to 2.1:1 and a pH ranging between 8-12 and also relates to a method for borminating aromatic compounds by using the above brominating agent.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: May 25, 2004
    Assignee: Council of Scientific and Industrial Research
    Inventors: Rajinder Nath Vohra, Pushpito Kumar Ghosh, Maheshkumar Ramniklal Gandhi, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Rohit Harshadray Dave, Koushik Halder, Kishorkumar Manmohandas Majeethia, Sohan Lal Daga, Vadakke Puthoor Mohandas, Rahul Jasvantrai Sanghavi