Patents by Inventor Mahmut Yilmaz

Mahmut Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940493
    Abstract: A circuit for improving control over asynchronous signal crossings during circuit scan tests includes multiple scan registers and a decoder configured to translate a combined output of the scan registers into multiple one-hot controls to the local clock gates of scan registers disposed in multiple different clock domains. Programmable registers are provided to selectively enable and disable the local clock gates of the different clock domains.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: March 26, 2024
    Assignee: NVIDIA CORP.
    Inventors: Mahmut Yilmaz, Vinod Pagalone, Munish Aggarwal, Doochul Shin
  • Publication number: 20240094291
    Abstract: A circuit for improving control over asynchronous signal crossings during circuit scan tests includes multiple scan registers and a decoder configured to translate a combined output of the scan registers into multiple one-hot controls to the local clock gates of scan registers disposed in multiple different clock domains. Programmable registers are provided to selectively enable and disable the local clock gates of the different clock domains.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: NVIDIA Corp.
    Inventors: Mahmut Yilmaz, Vinod Pagalone, Munish Aggarwal, Doochul Shin
  • Publication number: 20230409452
    Abstract: A system can include a memory and a processing device, operatively coupled to the memory, to perform operations including receiving a header block of an ordered set of blocks. The header block includes a header block payload and a first digest. The operations further include authenticating, based on the header block payload, the header block, and receiving a first data block of the ordered set of blocks. The first data block includes a first data block payload and a second digest. The operations further include authenticating, based on the first digest, the first data block, and processing the first data block payload.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 21, 2023
    Inventors: Smbat Tonoyan, Mahmut Yilmaz
  • Publication number: 20230146920
    Abstract: Introduced herein is a technique that reliably measures on-die noise of logic in a chip. The introduced technique places a noise measurement system in partitions of the chip that are expected to cause the most noise. The introduced technique utilizes a continuous free-running clock that feeds functional frequency to the noise measurement circuit throughout the noise measurement scan test. This allows the noise measurement circuit to measure the voltage noise of the logic during a shift phase, which was not possible in the conventional noise measurement method. Also, by being able to measure the voltage noise during a shift phase and hence in both phases of the scan test, the introduced technique can perform a more comprehensive noise measurement not only during ATE testing but as part of IST in the field.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 11, 2023
    Inventors: Bonita Bhaskaran, Nithin Valentine, Shantanu Sarangi, Mahmut Yilmaz, Suhas Satheesh, Charlie Hwang, Tezaswi Raja, Kevin Zhou, Sailendra Chadalavada, Kevin Ye, Seyed Nima Mozaffari Mojaveri, Kerwin Fu
  • Patent number: 11526644
    Abstract: The disclosure provides using test processors to provide a more flexible solution compared to the existing DFX blocks that are used for controlling test networks in chips. The test processors provide a highly flexible solution since programming of the test processors can be changed at any time; even after manufacturing, and can support practically an unlimited number of core chips in any configuration. The high flexibility provided via the test processors can reduce engineering effort needed in design and verification, accelerate schedules, and may prevent additional tapeouts in case of DFX design bugs. By making debug and diagnosis easier by providing an opportunity to change debug behavior as needed, the time-to-market timeline can be accelerated. Accordingly, the disclosure provides a chip with a test processor, a multi-chip processing system with a test processor, and a method of designing a chip having a test processor.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: December 13, 2022
    Assignee: NVIDIA Corporation
    Inventors: Kaushik Narayanun, Mahmut Yilmaz, Shantanu Sarangi, Jae Wu
  • Publication number: 20220138387
    Abstract: The disclosure provides using test processors to provide a more flexible solution compared to the existing DFX blocks that are used for controlling test networks in chips. The test processors provide a highly flexible solution since programming of the test processors can be changed at any time; even after manufacturing, and can support practically an unlimited number of core chips in any configuration. The high flexibility provided via the test processors can reduce engineering effort needed in design and verification, accelerate schedules, and may prevent additional tapeouts in case of DFX design bugs. By making debug and diagnosis easier by providing an opportunity to change debug behavior as needed, the time-to-market timeline can be accelerated. Accordingly, the disclosure provides a chip with a test processor, a multi-chip processing system with a test processor, and a method of designing a chip having a test processor.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 5, 2022
    Inventors: Kaushik Narayanun, Mahmut Yilmaz, Shantanu Sarangi, Jae Wu
  • Patent number: 10473720
    Abstract: In one embodiment, a test system comprises: a plurality of test partitions and a centralized controller configured to coordinate testing between the plurality of test partitions. At least one of the plurality of test partitions comprises: a partition test interface controller configured to control testing within at least one test partition in accordance with dynamic selection of a test mode, and at least one test chain configured to perform test operations. The dynamic selection of the test mode and control of testing within a test partition can be independent of selection of a test mode and control in others of the plurality of test partitions. In one embodiment, a free running clock signal is coupled to a test partition, and the partition test mode controller transforms the free running clock signal into a local partition test clock which is controlled in accordance with the dynamic selection of the test mode.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 12, 2019
    Assignee: Nvidia Corporation
    Inventors: Pavan Kumar Datla Jagannadha, Dheepakkumaran Jayaraman, Anubhav Sinha, Karthikeyan Natarajan, Shantanu Sarangi, Amit Sanghani, Milind Sonawane, Mahmut Yilmaz
  • Patent number: 10451676
    Abstract: A method for testing. An external clock frequency is generated. Test data is supplied over a plurality of SSI connections clocked at the external clock frequency, wherein the test data is designed for testing a logic block. A DSTA module is configured for the logic block that is integrated within a chip to a bandwidth ratio, wherein the bandwidth ratio defines the plurality of SSI connections and a plurality of PSI connections of the chip. The external clock frequency is divided down using the bandwidth ratio to generate an internal clock frequency, wherein the bandwidth ratio defines the external clock frequency and the internal clock frequency. The test data is scanned over the plurality of PSI connections clocked at the internal clock frequency according to the bandwidth ratio, wherein the plurality of PSI connections is configured for inputting the test data to the plurality of scan chains.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 22, 2019
    Assignee: Nvidia Corporation
    Inventors: Milind Sonawane, Amit Sanghani, Shantanu Sarangi, Jonathon E. Colburn, Bala Tarun Nelapatla, Sailendra Chadalavda, Rajendra Kumar Reddy.S, Mahmut Yilmaz, Pavan Kumar Datla Jagannadha
  • Patent number: 10444280
    Abstract: Granular dynamic test systems and methods facilitate efficient and effective timing of test operations. In one embodiment, a chip test system comprises: a first test partition operable to perform test operations based upon a first local test clock signal; a second test partition operable to perform test operations based upon a second local test clock signal; and a centralized controller configured to coordinate testing between the plurality of test partitions, wherein the coordination includes managing communication of test information between the plurality of test partitions and external pins. In one exemplary implementation, a trigger edge of the first local test clock signal is staggered with respect to a trigger edge of the second local test clock signal, wherein the stagger is coordinated to mitigate power consumption by test operations in the first test partition and test operations in the second test partition.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 15, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Dheepakkumaran Jayaraman, Karthikeyan Natarajan, Shantanu Sarangi, Amit Sanghani, Milind Sonawane, Sailendra Chadalavda, Jonathon E. Colburn, Kevin Wilder, Mahmut Yilmaz, Pavan Kumar Datla Jagannadha
  • Patent number: 10281524
    Abstract: In one embodiment, a test system comprises: a test partition configured to perform test operations; a centralized test controller for controlling testing by the test partition; and a test link interface controller configured to communicate between the centralized test controller and the test partition, wherein the test link interface controller controls dynamic changes to external pads associated with the test operations. The test link interface controller dynamically selects between an input direction and output direction for the external pads. The test link interface includes a pin direction controller that generates direction control signals based on the state of local test controller and communicates the desired direction to a boundary scan cell associated with the pin. The boundary scan cell programs the pad to either input or output direction depending on direction control signals. The input direction corresponds to driving test data and the output direction corresponds to observing test data.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: May 7, 2019
    Assignee: NVIDIA CORPORATION
    Inventors: Sailendra Chadalavda, Shantanu Sarangi, Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Dan Smith, Jue Wu, Mahmut Yilmaz
  • Publication number: 20170115352
    Abstract: Granular dynamic test systems and methods facilitate efficient and effective timing of test operations. In one embodiment, a chip test system comprises: a first test partition operable to perform test operations based upon a first local test clock signal; a second test partition operable to perform test operations based upon a second local test clock signal; and a centralized controller configured to coordinate testing between the plurality of test partitions, wherein the coordination includes managing communication of test information between the plurality of test partitions and external pins. In one exemplary implementation, a trigger edge of the first local test clock signal is staggered with respect to a trigger edge of the second local test clock signal, wherein the stagger is coordinated to mitigate power consumption by test operations in the first test partition and test operations in the second test partition.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Dheepakkumaran Jayaraman, Karthikeyan Natarajan, Shantanu Sarangi, Amit Sanghani, Milind Sonawane, Sailendra Chadalavda, Jonathon E. Colburn, Kevin Wilder, Mahmut Yilmaz
  • Publication number: 20170115345
    Abstract: A method for testing. An external clock frequency is generated. Test data is supplied over a plurality of SSI connections clocked at the external clock frequency, wherein the test data is designed for testing a logic block. A DSTA module is configured for the logic block that is integrated within a chip to a bandwidth ratio, wherein the bandwidth ratio defines the plurality of SSI connections and a plurality of PSI connections of the chip. The external clock frequency is divided down using the bandwidth ratio to generate an internal clock frequency, wherein the bandwidth ratio defines the external clock frequency and the internal clock frequency. The test data is scanned over the plurality of PSI connections clocked at the internal clock frequency according to the bandwidth ratio, wherein the plurality of PSI connections is configured for inputting the test data to the plurality of scan chains.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Milind Sonawane, Amit Sanghani, Shantanu Sarangi, Jonathon E. Colburn, Bala Tarun Nelapatla, Sailendra Chadalavda, Rajendra Kumar reddy.S, Mahmut Yilmaz
  • Publication number: 20170115338
    Abstract: In one embodiment, a test system comprises: a test partition configured to perform test operations; a centralized test controller for controlling testing by the test partition; and a test link interface controller configured to communicate between the centralized test controller and the test partition, wherein the test link interface controller controls dynamic changes to external pads associated with the test operations. The test link interface controller dynamically selects between an input direction and output direction for the external pads. The test link interface includes a pin direction controller that generates direction control signals based on the state of local test controller and communicates the desired direction to a boundary scan cell associated with the pin. The boundary scan cell programs the pad to either input or output direction depending on direction control signals. The input direction corresponds to driving test data and the output direction corresponds to observing test data.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Sailendra Chadalavda, Shantanu Sarangi, Milind Sonawane, Amit Sanghani, Jonathon E. Colburn, Dan Smith, Jue Wu, Mahmut Yilmaz
  • Publication number: 20170115351
    Abstract: In one embodiment, a test system comprises: a plurality of test partitions and a centralized controller configured to coordinate testing between the plurality of test partitions. At least one of the plurality of test partitions comprises: a partition test interface controller configured to control testing within at least one test partition in accordance with dynamic selection of a test mode, and at least one test chain configured to perform test operations. The dynamic selection of the test mode and control of testing within a test partition can be independent of selection of a test mode and control in others of the plurality of test partitions. In one embodiment, a free running clock signal is coupled to a test partition, and the partition test mode controller transforms the free running clock signal into a local partition test clock which is controlled in accordance with the dynamic selection of the test mode.
    Type: Application
    Filed: October 27, 2016
    Publication date: April 27, 2017
    Inventors: Pavan Kumar Datla Jagannadha, Dheepakkumaran Jayaraman, Anubhav Sinha, Karthikeyan Natarajan, Shantanu Sarangi, Amit Sanghani, Milind Sonawane, Mahmut Yilmaz