Patents by Inventor Maika Takita

Maika Takita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12154003
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: November 26, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Patent number: 12137619
    Abstract: Lattice arrangements for quantum qubits are described. A lattice arrangement can comprise adjacent structures having vertices connected by edges. The qubits can be positioned on the vertices. A qubit in the lattice arrangement directly connects to not more than three other qubits, or connects to another qubit via a coupling qubit on an edge between two qubits on a vertex. The adjacent structures can comprise hexagons, dodecagons or octagons. A superconducting qubit lattice can comprise superconducting target qubits and superconducting control qubits. The superconducting qubit lattice can comprise adjacent structures having vertices connected by edges, with target qubits positioned on the vertices and control qubits positioned on the edges. Logic operations between adjacent superconducting target and control qubits can be implemented by driving the superconducting control qubit at or near the frequency of the superconducting target qubit.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: November 5, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jerry M. Chow, Easwar Magesan, Matthias Steffen, Jay M. Gambetta, Maika Takita
  • Patent number: 12099903
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to a process to dynamically determine a threshold for determining a state of a qubit and apply the threshold for operating a pulse to de-excite the qubit. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise a decision component that is configured to determine a threshold of a plurality of thresholds to apply to measurement of a state of a qubit based on a probability distribution of state of the qubit, wherein a measurement at one side of the threshold is representative of the qubit being in the ground state, and wherein a measurement at another side of the threshold is representative of the qubit being in an excited state.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: September 24, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Patent number: 11989621
    Abstract: Techniques regarding tiling a CR gate configuration to one or more lattices characterizing quantum circuit topologies are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a tiling component that can generate a cross-resonance gate configuration that delineates a control qubit assignment and a target qubit assignment in conjunction with a frequency allocation onto a lattice characterizing a quantum circuit topology.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: May 21, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Moein Malekakhlagh, Jared Barney Hertzberg, Easwar Magesan, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay, Jason S. Orcutt
  • Patent number: 11960970
    Abstract: Systems and techniques that facilitate strategic pausing for quantum state leakage mitigation are provided. In various embodiments, a system can comprise a detection component that can detect a quantum state leakage associated with one or more qubits. In various aspects, the system can further comprise a pause component that can, in response to detecting the quantum state leakage, generate a time pause prior to execution of a quantum circuit on the one or more qubits. In various embodiments, the pause component can generate the time pause after execution of a previous quantum circuit on the one or more qubits, where the quantum state leakage arises during the execution of the previous quantum circuit. In some cases, the quantum state leakage can decay during the time pause.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: April 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oliver Dial, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay
  • Publication number: 20240020569
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to a process to dynamically determine a threshold for determining a state of a qubit and apply the threshold for operating a pulse to de-excite the qubit. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise a decision component that is configured to determine a threshold of a plurality of thresholds to apply to measurement of a state of a qubit based on a probability distribution of state of the qubit, wherein a measurement at one side of the threshold is representative of the qubit being in the ground state, and wherein a measurement at another side of the threshold is representative of the qubit being in an excited state.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 18, 2024
    Inventors: Ken Inoue, MAIKA TAKITA, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20240013077
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Application
    Filed: March 14, 2023
    Publication date: January 11, 2024
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Patent number: 11803441
    Abstract: Techniques regarding calibrating one or more quantum decoder algorithms are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a correlation inversion decoder component that can calibrate a quantum decoder algorithm for decoding a quantum error-correcting code by estimating hyperedge probabilities of a decoding hypergraph that are consistent with a syndrome dataset.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: October 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Edward Hong Chen, Andrew W. Cross, Youngseok Kim, Neereja Sundaresan, Maika Takita, Antonio Corcoles-Gonzalez, Theodore James Yoder
  • Patent number: 11636372
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 25, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20230094612
    Abstract: Techniques regarding calibrating one or more quantum decoder algorithms are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a correlation inversion decoder component that can calibrate a quantum decoder algorithm for decoding a quantum error-correcting code by estimating hyperedge probabilities of a decoding hypergraph that are consistent with a syndrome dataset.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Edward Hong Chen, Andrew W. Cross, Youngseok Kim, Neereja Sundaresan, Maika Takita, Antonio Corcoles-Gonzalez, Theodore James Yoder
  • Publication number: 20230010740
    Abstract: Techniques regarding tiling a CR gate configuration to one or more lattices characterizing quantum circuit topologies are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a tiling component that can generate a cross-resonance gate configuration that delineates a control qubit assignment and a target qubit assignment in conjunction with a frequency allocation onto a lattice characterizing a quantum circuit topology.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Moein Malekakhlagh, Jared Barney Hertzberg, Easwar Magesan, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay, Jason S. Orcutt
  • Publication number: 20220164692
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 26, 2022
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20220147855
    Abstract: Systems and techniques that facilitate strategic pausing for quantum state leakage mitigation are provided. In various embodiments, a system can comprise a detection component that can detect a quantum state leakage associated with one or more qubits. In various aspects, the system can further comprise a pause component that can, in response to detecting the quantum state leakage, generate a time pause prior to execution of a quantum circuit on the one or more qubits. In various embodiments, the pause component can generate the time pause after execution of a previous quantum circuit on the one or more qubits, where the quantum state leakage arises during the execution of the previous quantum circuit. In some cases, the quantum state leakage can decay during the time pause.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 12, 2022
    Inventors: Oliver Dial, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay
  • Publication number: 20220059749
    Abstract: Lattice arrangements for quantum qubits are described. A lattice arrangement can comprise adjacent structures having vertices connected by edges. The qubits can be positioned on the vertices. A qubit in the lattice arrangement directly connects to not more than three other qubits, or connects to another qubit via a coupling qubit on an edge between two qubits on a vertex. The adjacent structures can comprise hexagons, dodecagons or octagons. A superconducting qubit lattice can comprise superconducting target qubits and superconducting control qubits. The superconducting qubit lattice can comprise adjacent structures having vertices connected by edges, with target qubits positioned on the vertices and control qubits positioned on the edges. Logic operations between adjacent superconducting target and control qubits can be implemented by driving the superconducting control qubit at or near the frequency of the superconducting target qubit.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 24, 2022
    Inventors: Jerry M. Chow, Easwar Magesan, Matthias Steffen, Jay M. Gambetta, Maika Takita
  • Patent number: 11238361
    Abstract: An embodiment includes (CR) gate having a first control qubit coupled with a first target qubit, and a second CR gate having a second control qubit coupled with a second target qubit and the first control qubit. The embodiment also includes controller circuitry for performing operations including first and second iterations of: during a first time period, directing respective CR pulses to the first and second control qubits; during a second time period, directing respective single qubit pulses to the first control qubit and to the second target qubit; during a third time period, directing respective CR pulses to the first and second control qubits; and during a fourth time period, directing respective single qubit pulses to the second control qubit and to the first target qubit.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 1, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xuan Wei, Sarah Elizabeth Sheldon, Maika Takita, Jay Michael Gambetta
  • Patent number: 11165009
    Abstract: Lattice arrangements for quantum qubits are described. A lattice arrangement can comprise adjacent structures having vertices connected by edges. The qubits can be positioned on the vertices. A qubit in the lattice arrangement directly connects to not more than three other qubits, or connects to another qubit via a coupling qubit on an edge between two qubits on a vertex. The adjacent structures can comprise hexagons, dodecagons or octagons. A superconducting qubit lattice can comprise superconducting target qubits and superconducting control qubits. The superconducting qubit lattice can comprise adjacent structures having vertices connected by edges, with target qubits positioned on the vertices and control qubits positioned on the edges. Logic operations between adjacent superconducting target and control qubits can be implemented by driving the superconducting control qubit at or near the frequency of the superconducting target qubit.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jerry M. Chow, Easwar Magesan, Matthias Steffen, Jay M. Gambetta, Maika Takita
  • Publication number: 20210232962
    Abstract: An embodiment includes (CR) gate having a first control qubit coupled with a first target qubit, and a second CR gate having a second control qubit coupled with a second target qubit and the first control qubit. The embodiment also includes controller circuitry for performing operations including first and second iterations of: during a first time period, directing respective CR pulses to the first and second control qubits; during a second time period, directing respective single qubit pulses to the first control qubit and to the second target qubit; during a third time period, directing respective CR pulses to the first and second control qubits; and during a fourth time period, directing respective single qubit pulses to the second control qubit and to the first target qubit.
    Type: Application
    Filed: December 21, 2020
    Publication date: July 29, 2021
    Applicant: International Business Machines Corporation
    Inventors: Xuan Wei, Sarah Elizabeth Sheldon, Maika Takita, Jay Michael Gambetta
  • Patent number: 10956829
    Abstract: An embodiment includes (CR) gate having a first control qubit coupled with a first target qubit, and a second CR gate having a second control qubit coupled with a second target qubit and the first control qubit. The embodiment also includes controller circuitry for performing operations including first and second iterations of: during a first time period, directing respective CR pulses to the first and second control qubits; during a second time period, directing respective single qubit pulses to the first control qubit and to the second target qubit; during a third time period, directing respective CR pulses to the first and second control qubits; and during a fourth time period, directing respective single qubit pulses to the second control qubit and to the first target qubit.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xuan Wei, Sarah Elizabeth Sheldon, Maika Takita, Jay Michael Gambetta
  • Patent number: 10839306
    Abstract: Generating trial states for a variational quantum Eigenvalue solver (VQE) using a quantum computer is described. An example method includes selecting a number of samples S to capture from qubits for a particular trial state. The method further includes mapping a Hamiltonian to the qubits according the trial state. The method further includes setting up an entangler in the quantum computer, the entangler defining an entangling interaction between a subset of the qubits of the quantum computer. The method further includes reading out qubit states after post-rotations associated with Pauli terms in the target Hamiltonian, the reading out being performed for S samples. The method further includes computing an energy state using the S qubit states. The method further includes, in response to the estimated energy state not converging with an expected energy state, computing a new trial state for the VQE and iterating to compute the estimated energy using the new trial state.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Antonio Mezzacapo, Jay M. Gambetta, Abhinav Kandala, Maika Takita, Paul K. Temme
  • Publication number: 20200161529
    Abstract: Lattice arrangements for quantum qubits are described. A lattice arrangement can comprise adjacent structures having vertices connected by edges. The qubits can be positioned on the vertices. A qubit in the lattice arrangement directly connects to not more than three other qubits, or connects to another qubit via a coupling qubit on an edge between two qubits on a vertex. The adjacent structures can comprise hexagons, dodecagons or octagons. A superconducting qubit lattice can comprise superconducting target qubits and superconducting control qubits. The superconducting qubit lattice can comprise adjacent structures having vertices connected by edges, with target qubits positioned on the vertices and control qubits positioned on the edges. Logic operations between adjacent superconducting target and control qubits can be implemented by driving the superconducting control qubit at or near the frequency of the superconducting target qubit.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Inventors: Jerry M. Chow, Easwar Magesan, Matthias Steffen, Jay M. Gambetta, Maika Takita