Patents by Inventor Majosefina CUNNINGHAM

Majosefina CUNNINGHAM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691139
    Abstract: A method of producing bifunctional catalyst systems that include a carbon-coated metal catalyst may comprise: coating a metal catalyst particle with a carbon-containing small molecule to produce a coated metal catalyst particle; carbonizing the carbon-containing small molecule on the coated metal catalyst particle to produce a carbon-coated metal catalyst particle; and mixing the carbon-coated metal catalyst particle with an acid catalyst particle to produce an acid/metal bifunctional catalyst system.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: July 4, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 11654421
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution; mixing the metal catalyst precursor solution and an alkali metal buffer solution to produce a precipitate; ion exchanging the alkali metal in the precipitate for a non-alkali cation to produce a low-alkali metal precipitate comprising 3 wt % or less alkali metal by weight of the precipitate on a dry basis; producing a powder from the low-alkali metal precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 23, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 11638912
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution having a pH of about 2.5 to about 4.0; mixing the metal catalyst precursor solution and a basic solution having a pH of about 10 to about 13 to produce a mixture with a pH of about 6 to about 7 and a precipitate; producing a powder from the precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 2, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan
  • Patent number: 11602734
    Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: March 14, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 11420182
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbent includes an aluminum oxide support and an alkali metal salt impregnated on the support, and a silicon modification of the sorbent to reduce water uptake by the sorbent and make it more hydrophobic. The silicon modification can be an organosilyl moiety added after the initial sorbent is complete, or a silica source added to the aluminum oxide structure, typically via impregnation. The sorbents demonstrate better H2O/CO2 ratios. Compositions and methods of making are disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 23, 2022
    Assignees: ExxonMobile Technology and Engineering Company, TDA Research, Inc. W
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Patent number: 11198109
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes two alkali metal salts impregnated on the support. The two alkali metals include a potassium metal salts and a second alkali metal salt which is not potassium. The second metal salt disrupts poisoning effects that degrade sorbent lifetime. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 14, 2021
    Assignees: ExxonMobil Research and Engineering Company, TDA Research, Inc.
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20210268474
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes alkali metal salts within the support, in the form of pseudo alkali aluminate. The sorbents also include alkali metal salt impregnated on the support. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 2, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Patent number: 11046897
    Abstract: Methods are provided for performing selective hydrodesulfurization on a naphtha boiling range stream naphtha boiling range portion of a feed. It has been unexpectedly discovered that hydrodesulfurization with improved octane retention can be performed by using a catalyst that comprises CoMo supported on a catalyst support that includes a zeotype framework. By using a catalyst support including a zeotype framework, an unexpectedly high amount of octane in the naphtha boiling range portion of the hydrodesulfurized effluent is maintained.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 29, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson, Wenyih F. Lai, Brandon J. O'Neill
  • Publication number: 20210046470
    Abstract: A method of producing bifunctional catalyst systems that include a carbon-coated metal catalyst may comprise: coating a metal catalyst particle with a carbon-containing small molecule to produce a coated metal catalyst particle; carbonizing the carbon-containing small molecule on the coated metal catalyst particle to produce a carbon-coated metal catalyst particle; and mixing the carbon-coated metal catalyst particle with an acid catalyst particle to produce an acid/metal bifunctional catalyst system.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20210046461
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution; mixing the metal catalyst precursor solution and an alkali metal buffer solution to produce a precipitate; ion exchanging the alkali metal in the precipitate for a non-alkali cation to produce a low-alkali metal precipitate comprising 3 wt % or less alkali metal by weight of the precipitate on a dry basis; producing a powder from the low-alkali metal precipitate; and calcining the powder to produce a metal catalyst.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20210046462
    Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20210046460
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution having a pH of about 2.5 to about 4.0; mixing the metal catalyst precursor solution and a basic solution having a pH of about 10 to about 13 to produce a mixture with a pH of about 6 to about 7 and a precipitate; producing a powder from the precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan
  • Publication number: 20190375995
    Abstract: Methods are provided for performing selective hydrodesulfurization on a naphtha boiling range stream naphtha boiling range portion of a feed. It has been unexpectedly discovered that hydrodesulfurization with improved octane retention can be performed by using a catalyst that comprises CoMo supported on a catalyst support that includes a zeotype framework. By using a catalyst support including a zeotype framework, an unexpectedly high amount of octane in the naphtha boiling range portion of the hydrodesulfurized effluent is maintained.
    Type: Application
    Filed: May 17, 2019
    Publication date: December 12, 2019
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson, Wenyih F. Lai, Brandon J. O'Neill
  • Publication number: 20190291085
    Abstract: Bulk metallic catalyst precursors are provided that include a Group VIB metal, such as Ni, a Group VIII metal, such as Mo or W, an organic-compound based component, and an organo-metalloxane polymer or gel. The catalyst precursors can further include a binder. Amorphous sulfided catalysts formed from the catalyst precursors are also provided. The catalyst precursor can have a surface area of about 50 m2/g or less.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson
  • Publication number: 20180250653
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbent includes an aluminum oxide support and an alkali metal salt impregnated on the support, and a silicon modification of the sorbent to reduce water uptake by the sorbent and make it more hydrophobic. The silicon modification can be an organosilyl moiety added after the initial sorbent is complete, or a silica source added to the aluminum oxide structure, typically via impregnation. The sorbents demonstrate better H2O/CO2 ratios. Compositions and methods of making are disclosed.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20180250652
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes two alkali metal salts impregnated on the support. The two alkali metals include a potassium metal salts and a second alkali metal salt which is not potassium. The second metal salt disrupts poisoning effects that degrade sorbent lifetime. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20180250654
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbent includes an aluminum oxide support and an alkali metal salt impregnated on the support. The support can be prepared by creating and extruding a dough to create an extrudate, which is then drying and calcined to form the support. Calcination temperatures can be between about 120° C. and 500° C., preferably about 200° C. to about 400° C. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20180250655
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes alkali metal salts within the support, in the form of pseudo alkali aluminate. The sorbents also include alkali metal salt impregnated on the support. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Patent number: 9731283
    Abstract: Bulk metallic catalyst precursor compositions are provided that include a Group VIB metal, a Group VIII metal, an organic-compound based component, and an organo-metalloxane polymer or gel. The catalyst precursor compositions can further include a binder. Amorphous sulfided catalysts formed from the catalyst precursor compositions are also provided. The catalyst precursor compositions can have a surface area of about 20 m2/g or less.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 15, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Majosefina Cunningham, Jason M. Golias, Chuansheng Bai
  • Publication number: 20170080410
    Abstract: Bulk metallic catalyst precursor compositions are provided that include a Group VIB metal, a Group VIII metal, an organic-compound based component, and an organo-metalloxane polymer or gel. The catalyst precursor compositions can further include a binder. Amorphous sulfided catalysts formed from the catalyst precursor compositions are also provided. The catalyst precursor compositions can have a surface area of about 20 m2/g or less.
    Type: Application
    Filed: August 22, 2016
    Publication date: March 23, 2017
    Inventors: Majosefina CUNNINGHAM, Jason M. GOLIAS, Chuansheng BAI