Patents by Inventor Makiko ICHIKAWA

Makiko ICHIKAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952423
    Abstract: A novel antibody that can be used as an anti-tumor agent and an anti-tumor agent that comprises, as an active ingredient, a molecule containing such an antibody.
    Type: Grant
    Filed: May 16, 2023
    Date of Patent: April 9, 2024
    Assignees: MIE UNIVERSITY, DAIICHI SANKYO COMPANY, LIMITED
    Inventors: Hiroshi Shiku, Yasushi Akahori, Kento Tanaka, Ayaka Yatsu, Junya Ichikawa, Toshiaki Ohtsuka, Shiho Kozuma, Ryuji Hashimoto, Makiko Nakayama, Naoya Shinozaki, Kensuke Nakamura, Ichiro Watanabe, Shinji Furuzono
  • Patent number: 11872520
    Abstract: A method for inspecting a separation membrane module has a sealing step for sealing a gas for inspection on a primary side of zeolite membrane. The dynamic molecular diameter for the gas for inspection is greater than 1.07 times the pore diameter in the zeolite membrane. The gas for inspection has the characteristic of having a rate of reduction for a CO2 gas permeation rate in the zeolite membrane of less than 10% when a separation membrane structure is allowed to stand for 60 minutes in the gas for inspection at 25 degrees C. and 0.1 MPaG.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 16, 2024
    Assignee: NGK INSULATORS, LTD.
    Inventors: Katsuya Shimizu, Makiko Ichikawa, Kenji Yajima, Takeshi Hagio
  • Publication number: 20230415099
    Abstract: A method of evaluating a separation membrane module includes a step of supplying a performance degradation gas having a property of reducing permeance of a separation membrane to a primary side of the separation membrane, and a step of, after the previous step, supplying an evaluation fluid to the primary side of the separation membrane to measure a flow rate of the evaluation fluid to a secondary side of the separation membrane.
    Type: Application
    Filed: September 13, 2023
    Publication date: December 28, 2023
    Applicant: NGK INSULATORS, LTD.
    Inventors: Katsuya SHIMIZU, Makiko ICHIKAWA, Kenichi NODA, Naoto KINOSHITA
  • Publication number: 20230114715
    Abstract: A separation membrane complex includes a porous support and a separation membrane formed on the support and used to separate fluid. A supply/permeation area ratio obtained by dividing a supply-side surface area by a permeation-side surface area is higher than or equal to 1.1 and lower than or equal to 5.0, the supply-side surface area being the area of a region of the surface of the separation membrane to which fluid is supplied, the permeation-side surface area being the area of a region of the surface of the support from which fluid that has permeated through the separation membrane and the support flows off.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Applicant: NGK Insulators, Ltd.
    Inventors: Noriyuki OGASAWARA, Kenji YAJIMA, Makiko ICHIKAWA
  • Publication number: 20230084665
    Abstract: A separation membrane complex includes a porous support and a separation membrane formed on the support. The separation membrane has a small void. A small void index Ik expressed by (?(Sk1.5))/(Sm1.5) and indicating the abundance ratio of small voids is higher than or equal to 10×10?15, and a large void index Ip expressed by (?(Sp2))/(Sm2) and indicating the abundance ratio of large voids is lower than 200×10?22, where Sm is the surface area of the separation membrane, Sk is the area per small void, and Sp is the area per large void. Accordingly, the separation membrane complex can achieve a high separation ratio.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 16, 2023
    Applicant: NGK Insulators, Ltd.
    Inventors: Katsuya SHIMIZU, Koh KOBAYASHI, Kenichi NODA, Makiko ICHIKAWA, Naoto KINOSHITA
  • Publication number: 20230073866
    Abstract: A separation membrane module includes a separation membrane complex having a support and a separation membrane provided on the support, a housing container for housing the separation membrane complex, and a sealing member existing between a supporting surface provided inside the housing container and a supported surface of the separation membrane complex, being in close contact with the supporting surface and the supported surface. A first static friction coefficient between the sealing member and the supported surface and/or a second static friction coefficient between the sealing member and the supporting surface are/is not higher than 0.5. A value obtained by multiplying the first static friction coefficient and/or the second static friction coefficient by a compressive force [N] of the sealing member and dividing the product by a mass [kg] of the separation membrane complex is larger than 0.7.
    Type: Application
    Filed: October 11, 2022
    Publication date: March 9, 2023
    Applicant: NGK INSULATORS, LTD.
    Inventors: Takahiro NAKANISHI, Katsuya SHIMIZU, Naoto KINOSHITA, Makiko ICHIKAWA
  • Publication number: 20230026226
    Abstract: A gas separation method includes supplying a mixed gas to a zeolite membrane complex and permeating a high permeability gas through the zeolite membrane complex to separate the high permeability gas from other gases. The mixed gas includes a high permeability gas and a trace gas that is lower in concentration than the high permeability gas. The molar concentration of a first gas included in the trace gas in the mixed gas is higher than the molar concentration of a second gas included in the trace gas in the mixed gas. The adsorption equilibrium constant of the first gas on the zeolite membrane is less than 60 times that of the high permeability gas. The adsorption equilibrium constant of the second gas on the zeolite membrane is 400 times or more that of the high permeability gas.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 26, 2023
    Applicant: NGK Insulators, Ltd.
    Inventors: Katsuya SHIMIZU, Makiko ICHIKAWA, Kenji YAJIMA
  • Publication number: 20230018523
    Abstract: A gas separation method includes supplying a mixed gas to a zeolite membrane complex and permeating a high permeability gas through the zeolite membrane complex to separate the high permeability gas from other gases. The mixed gas includes a high permeability gas and a trace gas that is lower in concentration than the high permeability gas. The trace gas contains an organic substance whose molar concentration in the mixed gas is higher than or equal to 1.0 mol %. The adsorption equilibrium constant of the organic substance on the zeolite membrane is less than 150 times the adsorption equilibrium constant of the high permeability gas.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 19, 2023
    Applicant: NGK Insulators, Ltd.
    Inventors: Katsuya SHIMIZU, Makiko ICHIKAWA, Kenji YAJIMA
  • Patent number: 11498035
    Abstract: A zeolite membrane complex includes a porous support, and a zeolite membrane formed on the support. The zeolite membrane includes a zeolite crystal phase constituted by a plurality of zeolite crystals, and a dense grain boundary phase, which is a region between the plurality of zeolite crystals. A density of at least part of the grain boundary phase is smaller than a density of the zeolite crystal phase. A width of the grain boundary phase is 2 nm or more and 10 nm or less. Accordingly, it is possible to realize high permeability and high separating performance, and high durability of the zeolite membrane.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 15, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Naoto Kinoshita, Makiko Ichikawa, Kenji Yajima, Makoto Miyahara, Katsuya Shimizu
  • Patent number: 11402314
    Abstract: A method for inspecting a separation membrane structure includes an assembly step of sealing a separation membrane structure that includes a porous substrate and a separation membrane into a casing, and an inspection step of applying pressure to an inspection liquid that has filled a first main surface side of the separation membrane.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: August 2, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyahara, Makiko Ichikawa, Kenji Yajima, Takeshi Hagio
  • Patent number: 11278848
    Abstract: A separation membrane structure has partition walls including a honeycomb shaped porous ceramic body provided with a large number of pores, and cells to become through channels of a fluid are formed by the partition walls. The cells include separation cells and slit cells. In the separation cells, the intermediate layer is disposed on the surface of a substrate, and a separation layer is further formed. The intermediate layer has a structure where aggregate particles are bonded to one another by an inorganic bonding material having a thermal expansion coefficient equal to or higher than that of the aggregate particles.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: March 22, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Makoto Miyahara, Tetsuya Uchikawa, Makoto Teranishi, Makiko Ichikawa, Hideyuki Suzuki
  • Patent number: 11219879
    Abstract: An aluminophosphate-metal oxide bonded body including a metal oxide having a bonding surface on a part of the surface thereof, and aluminophosphate that is disposed on the bonding surface of the metal oxide, wherein an alkali metal, an alkaline earth metal or both of these is/are disposed on the bonding surface of the metal oxide, and the content rate of the alkali metal, alkaline earth metal or both is from 0.3 to 30.0% by mass with respect to all of the substances that are disposed on the bonding surface of the metal oxide. An aluminophosphate-metal oxide bonded body that provides a favorable bonded state even for complicated shapes is provided.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: January 11, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Hagio, Makoto Miyahara, Tetsuya Uchikawa, Makiko Ichikawa, Kenichi Noda, Kenji Yajima
  • Publication number: 20210322932
    Abstract: A zeolite membrane composite includes a porous support and a zeolite membrane formed on the support. The zeolite membrane includes a low-density layer that covers the support, and a compact layer that covers the low-density layer. The compact layer has a higher content of a zeolite crystalline phase than the low-density layer. By in this way forming the compact layer on the low-density layer that covers the support, the thin compact layer with no defects can be formed more easily than in the case where a compact layer is formed directly on a support.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Applicant: NGK INSULATORS, LTD.
    Inventors: Makiko ICHIKAWA, Kenji YAJIMA, Makoto MIYAHARA, Naoto KINOSHITA
  • Patent number: 11135545
    Abstract: Provided is a gas separation device configured to separate a non-hydrocarbon gas from a feed gas containing the non-hydrocarbon gas through use of a gas separation membrane, in which a decrease in operating rate can be suppressed, and economic efficiency is satisfactory. A first membrane module (1) and a second membrane module (2) are arranged in parallel to each other with respect to supply lines for a feed gas. Gas lines for regeneration (14, 15) ((24, 25)), which are branched from a permeate gas line (13) ((23)) of the membrane module (1) ((2)), and which are joined to a feed gas line (21) ((11)) configured to supply the feed gas to the membrane module (2) ((1)), are provided. Under a state in which the feed gas is supplied to the membrane module (1), a permeate gas through the membrane module (1) is supplied, as a gas for regeneration, to the membrane module (2) through the gas lines for regeneration (14, 15).
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: October 5, 2021
    Inventors: Hiroaki Hasegawa, Yasushi Fujimora, Aiko Matsuyama, Shuichi Oguro, Keiichi Nishida, Akiko Fukuta, Kenjii Yajima, Makiko Ichikawa, Takeshi Hagio, Naoko Takahashi, Makoto Miyahara, Katsuya Shimizu
  • Publication number: 20200398228
    Abstract: A zeolite membrane complex includes a porous support, and a zeolite membrane formed on the support. The zeolite membrane includes a zeolite crystal phase constituted by a plurality of zeolite crystals, and a dense grain boundary phase, which is a region between the plurality of zeolite crystals. A density of at least part of the grain boundary phase is smaller than a density of the zeolite crystal phase. A width of the grain boundary phase is 2 nm or more and 10 nm or less. Accordingly, it is possible to realize high permeability and high separating performance, and high durability of the zeolite membrane.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 24, 2020
    Applicant: NGK INSULATORS, LTD.
    Inventors: Naoto KINOSHITA, Makiko ICHIKAWA, Kenji YAJIMA, Makoto MIYAHARA, Katsuya SHIMIZU
  • Publication number: 20200269188
    Abstract: Provided is a gas separation device configured to separate a non-hydrocarbon gas from a feed gas containing the non-hydrocarbon gas through use of a gas separation membrane, in which a decrease in operating rate can be suppressed, and economic efficiency is satisfactory. A first membrane module (1) and a second membrane module (2) are arranged in parallel to each other with respect to supply lines for a feed gas. Gas lines for regeneration (14, 15) ((24, 25)), which are branched from a permeate gas line (13) ((23)) of the membrane module (1) ((2)), and which are joined to a feed gas line (21) ((11)) configured to supply the feed gas to the membrane module (2) ((1)), are provided. Under a state in which the feed gas is supplied to the membrane module (1), a permeate gas through the membrane module (1) is supplied, as a gas for regeneration, to the membrane module (2) through the gas lines for regeneration (14, 15).
    Type: Application
    Filed: May 12, 2017
    Publication date: August 27, 2020
    Inventors: Hiroaki Hasegawa, Yasushi Fujimora, Aiko Matsuyama, Shuichi Oguro, Keiichi Nishida, Akiko Fukuta, Kenjii Yajima, Makiko Ichikawa, Takeshi Hagio, Naoko Takahashi, Makoto Miyahara, Katsuya Shimizu
  • Patent number: 10618011
    Abstract: A package comprises an airtight container having an oxygen permeability of less than or equal to 15 ml/m2dMPa and water vapor permeability of less than or equal to 2 g/m2d, and a sub-nano membrane structure accommodated in the airtight container. The sub-nano membrane structure having a porous support and a sub-nano membrane. The sub-nano membrane formed on the porous support and having an average pore diameter of less than or equal to 1 nm.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: April 14, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyahara, Makiko Ichikawa, Kenji Yajima, Katsuhiro Tokura
  • Patent number: 10550005
    Abstract: A production method for zeolite powder containing forming zeolite seed crystals by wet pulverizing zeolite crystals using a silica unsaturated alkali solution containing an alkali source, preparing a silica saturated alkali solution by adding a silica source to the silica unsaturated alkali solution containing the zeolite seed crystals, and synthesizing zeolite powder by hermetically heating the silica saturated alkali solution.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 4, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Hagio, Makoto Miyahara, Hiroyuki Shibata, Makiko Ichikawa
  • Patent number: 10550004
    Abstract: A production method for zeolite powder includes disintegrating zeolite seed crystals in a silica unsaturated alkali solution containing an alkali source, preparing a silica saturated alkali solution by adding a silica source to the silica unsaturated alkali solution containing the zeolite seed crystals, and synthesizing zeolite powder by hermetically heating the silica saturated alkali solution.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 4, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Hagio, Makoto Miyahara, Hiroyuki Shibata, Makiko Ichikawa
  • Publication number: 20200001229
    Abstract: A method for inspecting a separation membrane module has a sealing step for sealing a gas for inspection on a primary side of zeolite membrane. The dynamic molecular diameter for the gas for inspection is greater than 1.07 times the pore diameter in the zeolite membrane. The gas for inspection has the characteristic of having a rate of reduction for a CO2 gas permeation rate in the zeolite membrane of less than 10% when a separation membrane structure is allowed to stand for 60 minutes in the gas for inspection at 25 degrees C. and 0.1 MPaG.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Applicant: NGK INSULATORS, LTD
    Inventors: Katsuya SHIMIZU, Makiko Ichikawa, Kenji Yajima, Takeshi Hagio