Patents by Inventor Mako Motoyoshi

Mako Motoyoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9882211
    Abstract: A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with improved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 30, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Tatsuya Ikenuma, Teruaki Ochiai, Shuhei Yoshitomi, Mako Motoyoshi, Hiroyuki Miyake, Yohei Momma, Takuya Hirohashi, Satoshi Seo
  • Publication number: 20170324082
    Abstract: A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Takahiro KAWAKAMI, Masaki YAMAKAJI, Mako MOTOYOSHI, Rika YATABE
  • Patent number: 9768443
    Abstract: A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: September 19, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro Kawakami, Masaki Yamakaji, Mako Motoyoshi, Rika Yatabe
  • Publication number: 20170170466
    Abstract: A power storage device having high capacitance is provided. A power storage device with excellent cycle characteristics is provided. A power storage device with high charge and discharge efficiency is provided. A power storage device including a negative electrode with low resistance is provided. A negative electrode for a power storage device includes a number of composites in particulate forms. The composites include a negative electrode active material, a first functional material, and a compound. The compound includes a constituent element of the negative electrode active material and a constituent element of the first functional material. The negative electrode active material includes a region in contact with at least one of the first functional material or the compound.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 15, 2017
    Inventors: Hiroyuki MIYAKE, Nobuhiro INOUE, Ryo YAMAUCHI, Mako MOTOYOSHI, Takahiro KAWAKAMI, Mayumi MIKAMI, Miku FUJITA, Shunpei YAMAZAKI
  • Publication number: 20160308200
    Abstract: A positive electrode for a secondary battery which enables both good battery characteristics and electrode strength at a predetermined level, a secondary battery, and a method for fabricating the positive electrode for a secondary battery are provided. The positive electrode for a secondary battery includes a current collector and an active material layer over the current collector. The active material layer includes an active material, graphene, and a binder. A carbon layer is on a surface of the active material. The proportion of the graphene in the active material layer is greater than or equal to 0.1 wt % and less than or equal to 1.0 wt %.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventors: Masaki YAMAKAJI, Takahiro KAWAKAMI, Mako MOTOYOSHI, Rika YATABE
  • Patent number: 9472805
    Abstract: A method for synthesizing alkali metal silicate which can be easily microparticulated, a method for synthesizing, with the use of the alkali metal silicate, alkali transition metal silicate, and alkali metal silicate and alkali transition metal silicate which are synthesized by the synthesis methods are disclosed. The alkali metal silicate is synthesized by the following steps: forming a basic solution including an alkali metal salt; mixing the basic solution including the alkali metal salt with silicon particles to form a basic solution including the alkali metal silicate; and adding the basic solution including the alkali metal silicate to a poor solvent for the alkali metal silicate to precipitate the alkali metal silicate. Further, the alkali metal silicate is mixed with a microparticulated compound including a transition metal to form a mixture, and the mixture is subjected to heat treatment, whereby the alkali transition metal silicate is generated.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: October 18, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mako Motoyoshi, Takahiro Kawakami, Masaki Yamakaji
  • Patent number: 9385366
    Abstract: A positive electrode for a secondary battery which enables both good battery characteristics and electrode strength at a predetermined level, a secondary battery, and a method for fabricating the positive electrode for a secondary battery are provided. The positive electrode for a secondary battery includes a current collector and an active material layer over the current collector. The active material layer includes an active material, graphene, and a binder. A carbon layer is on a surface of the active material. The proportion of the graphene in the active material layer is greater than or equal to 0.1 wt % and less than or equal to 1.0 wt %.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: July 5, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki Yamakaji, Takahiro Kawakami, Mako Motoyoshi, Rika Yatabe
  • Publication number: 20160126541
    Abstract: A negative electrode and a secondary battery including the negative electrode are provided. A plurality of projections and depressions are provided in a negative electrode active material layer and a negative electrode current collector. The plurality of projections and depressions in the negative electrode active material layer absorb expansion of the negative electrode active material and suppress deformation thereof. The plurality of projections and depressions in the negative electrode current collector suppress deformation of the negative electrode current collector caused by expansion and contraction of the negative electrode active material.
    Type: Application
    Filed: October 23, 2015
    Publication date: May 5, 2016
    Inventors: Junya GOTO, Mako MOTOYOSHI, Yuika SATO, Takahiro KAWAKAMI
  • Publication number: 20160118658
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Shuhei YOSHITOMI, Takuya HIROHASHI, Mako MOTOYOSHI, Yohei MOMMA, Junya GOTO
  • Publication number: 20150325855
    Abstract: A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with improved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventors: Takahiro KAWAKAMI, Tatsuya IKENUMA, Teruaki OCHIAI, Shunhei YOSHITOMI, Mako MOTOYOSHI, Hiroyuki MIYAKE, Yohei MOMMA, Takuya HIROHASHI, Satoshi SEO
  • Publication number: 20150174790
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 25, 2015
    Inventors: Masaki YAMAKAJI, Koji NARA, Mako MOTOYOSHI
  • Patent number: 8992795
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Yamakaji, Koji Nara, Mako Motoyoshi
  • Publication number: 20140127568
    Abstract: A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Masaki Yamakaji, Mako Motoyoshi, Rika Yatabe
  • Publication number: 20140057165
    Abstract: A positive electrode for a secondary battery which enables both good battery characteristics and electrode strength at a predetermined level, a secondary battery, and a method for fabricating the positive electrode for a secondary battery are provided. The positive electrode for a secondary battery includes a current collector and an active material layer over the current collector. The active material layer includes an active material, graphene, and a binder. A carbon layer is on a surface of the active material. The proportion of the graphene in the active material layer is greater than or equal to 0.1 wt % and less than or equal to 1.0 wt %.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki YAMAKAJI, Takahiro Kawakami, Mako Motoyoshi, Rika Yatabe
  • Publication number: 20130059208
    Abstract: A method for synthesizing alkali metal silicate which can be easily microparticulated, a method for synthesizing, with the use of the alkali metal silicate, alkali transition metal silicate, and alkali metal silicate and alkali transition metal silicate which are synthesized by the synthesis methods are disclosed. The alkali metal silicate is synthesized by the following steps: forming a basic solution including an alkali metal salt; mixing the basic solution including the alkali metal salt with silicon particles to form a basic solution including the alkali metal silicate; and adding the basic solution including the alkali metal silicate to a poor solvent for the alkali metal silicate to precipitate the alkali metal silicate. Further, the alkali metal silicate is mixed with a microparticulated compound including a transition metal to form a mixture, and the mixture is subjected to heat treatment, whereby the alkali transition metal silicate is generated.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 7, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mako MOTOYOSHI, Takahiro Kawakami, Masaki Yamakaji
  • Publication number: 20120148924
    Abstract: To provide a power storage device having a solid electrolyte, in which a charge-discharge capacity can be increased, and a method for manufacturing the power storage device. The power storage device includes a positive electrode, a negative electrode, and an electrolyte provided between the positive electrode and the negative electrode, and the electrolyte includes an ion-conductive high molecular compound, an inorganic oxide, and a lithium salt, and the inorganic oxide is included in the electrolyte at more than 30 wt % and 50 wt % or less to the total of the ion-conductive high molecular compound and the inorganic oxide.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 14, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kiyofumi Ogino, Kuniharu Nomoto, Teppei Oguni, Mako Motoyoshi
  • Publication number: 20120091405
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki Yamakaji, Koji Nara, Mako Motoyoshi