Patents by Inventor Makoto Itonaga

Makoto Itonaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190206435
    Abstract: A magnet structure includes first and second magnet units. The first magnet unit is provided with a first magnet fixing section that includes a first surface and a first magnet having a first polarity on the first surface's side. The second magnet unit is provided with a second magnet fixing section that includes a second surface and a second magnet having a second polarity on the second surface's side, the second polarity being an opposite polarity to the first polarity. The first and second surfaces are located next to one another on the same plane to form a magnetic attachment surface which is magnetically attached to a magnetically-attached object. The second magnet unit is supported by the first magnet unit so as to move in a predetermined range.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Shigehiko IWAMA, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA, Masayuki ONO, Katsue HORIKOSHI
  • Publication number: 20190064048
    Abstract: An analysis method irradiates, with laser light, an analysis substrate made of a resin material and having a reaction region on which detection target substances and nanoparticles of a metal compound for labeling the detection target substances are captured. The analysis method extracts, as a substrate signal level, a signal level generated when receiving reflected light from the analysis substrate. The analysis method receives reflected light from the reaction region to generate a light reception level signal. The analysis method extracts a nanoparticle detection signal from the light reception level signal of the reflected light from the reaction region, the nanoparticle detection signal having a higher level than the signal level of the reflected light from the analysis substrate. The analysis method detects the nanoparticles in accordance with the extracted nanoparticle detection signal.
    Type: Application
    Filed: October 31, 2018
    Publication date: February 28, 2019
    Inventors: Masayuki ONO, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA, Shigehiko IWAMA
  • Publication number: 20180321227
    Abstract: An analysis device includes a turntable, an optical pickup, and a controller. The turntable holds a specimen analysis disc having reaction regions on which nanoparticles binding to substances to be detected are captured. The optical pickup emits laser light to each reaction region, receives a reflected light from each reaction region, and generates a light reception level signal. The controller sequentially generates a plurality of measurement gate signals for counting the number of the nanoparticles captured on each reaction region, counts the number of the nanoparticles of each of the measurement gate signals based on the light reception level signal, specifies a measurement gate section in each reaction region according to a measurement result per measurement gate signal, and adds up the number of the nanoparticles of the respective measurement gate signals in the measurement gate section.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Shigehiko IWAMA, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA, Masayuki ONO
  • Patent number: 10119962
    Abstract: A recessed portion and a protruding portion arranged periodically are formed on a base portion. In the recessed portion, an antibody that binds to an antigen existing on a surface of each exosome to be detected is immobilized and then caused to bind to the exosomes. The width of the protruding portion is smaller than the average particle diameter of the exosomes.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 6, 2018
    Assignee: JVC KENWOOD CORPORATION
    Inventors: Makoto Itonaga, Shingo Yagyu, Yuichi Hasegawa, Koji Tsujita, Masayuki Ono
  • Publication number: 20180217175
    Abstract: An analysis device includes a turntable holding a substrate, an optical pickup driven in a direction perpendicular to a rotation axis of the turntable and configured to emit laser light to reaction regions and to receive reflected light from the respective reaction regions, an optical pickup drive circuit, and a controller. The reaction regions are formed at positions different from the center of the substrate. The center of the substrate is located on the rotation axis of the turntable. The optical pickup detects a reception level of the reflected light to generate a light reception level signal. The controller controls a turntable drive circuit to rotate the substrate, controls the optical pickup drive circuit to drive the optical pickup, and specifies the respective reaction regions in accordance with a positional information signal and the light reception level signal.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Shigehiko IWAMA, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA, Masayuki ONO, Makoto IGARASHI
  • Publication number: 20180180604
    Abstract: A first sample solution including exosomes including first to third detection target substances is mixed with a first buffer solution including first nanoparticles including first binding substances which bind to the first detection target substances. The first detection target substances and the first binding substances are bound together, so as to form first complexes of the exosomes and the first nanoparticles. The first complexes are isolated from a mixed solution of the first sample solution and the first buffer solution. The second detection target substances and the second binding substances are bound together, so as to capture the first complexes on a substrate. The second binding substances are fixed onto the substrate. A second buffer solution including second nanoparticles including third binding substances which bind to the third detection target substances is reacted with the first complexes.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 28, 2018
    Inventors: Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA, Masayuki ONO, Shigehiko IWAMA, Makoto IGARASHI
  • Publication number: 20170184582
    Abstract: An analysis device includes an optical scanning unit and a pulse waveform analysis unit. The optical scanning unit optically scans a surface of a substrate to which analytes binding to particles are fixed, and obtains a detection signal from the substrate. The pulse waveform analysis unit includes an amplitude determination unit configured to determine whether a peak value of the pulse waveform is within a first range smaller than a first level and greater than a second level having a polarity identical to the first level; and a pulse width determination unit configured to determine whether a pulse width of the pulse waveform is within a second range.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Masayuki ONO, Shingo YAGYU, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA
  • Publication number: 20170010260
    Abstract: An analysis device optically scans a surface of a substrate to which particles are fixed, detects a pulse wave included in a detection signal obtained from an optical scanning unit when the optical scanning unit scans the substrate, and counts the particles based on pulse interval between two pulse waves each having pulse width less than first reference value determined depending on first pulse width when the optical scanning unit scans a plurality of particles adjacent to each other when the two pulse waves are detected consecutively.
    Type: Application
    Filed: September 21, 2016
    Publication date: January 12, 2017
    Inventors: Masayuki ONO, Shingo YAGYU, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA
  • Publication number: 20170003213
    Abstract: An analysis device optically scans a surface of a substrate to which analytes and particles for labeling the analytes are fixed, detects a pulse wave included in a detection signal obtained from an optical scanning unit when the optical scanning unit scans the substrate, and counts the analytes and determines that the analyte count is one when two pulse waves are detected consecutively each having pulse width less than first reference value determined depending on first pulse width in the detection signal when the optical scanning unit scans a plurality of particles adjacent to each other.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Inventors: Masayuki ONO, Shingo YAGYU, Makoto ITONAGA, Yuichi HASEGAWA, Koji TSUJITA
  • Publication number: 20160033486
    Abstract: A recessed portion and a protruding portion arranged periodically are formed on a base portion. In the recessed portion, an antibody that binds to an antigen existing on a surface of each exosome to be detected is immobilized and then caused to bind to the exosomes. The width of the protruding portion is smaller than the average particle diameter of the exosomes.
    Type: Application
    Filed: October 5, 2015
    Publication date: February 4, 2016
    Inventors: Makoto ITONAGA, Shingo YAGYU, Yuichi HASEGAWA, Koji TSUJITA, Masayuki ONO
  • Patent number: 8691160
    Abstract: A sample analysis disc has concave sections and convex sections formed alternately in a track area of a disc surface. Labeled beads are immobilized to the track area. Each labeled bead has a biopolymer bound thereto. Only one of the labeled beads is allowed to be filled in each concave section.
    Type: Grant
    Filed: May 12, 2012
    Date of Patent: April 8, 2014
    Assignee: JVC KENWOOD Corporation
    Inventors: Masayuki Ono, Makoto Itonaga, Koji Tsujita, Yuichi Hasegawa, Kunihisa Matsuzaki
  • Patent number: 8611411
    Abstract: A linear equalizer unit sequentially subjects a signal to be processed to linear equalization. A temporary decision unit sequentially subjects a signal subjected to linear equalization by the linear equalizer unit to temporary decision. A nonlinear equalizer unit derives a plurality of coefficients using a signal subjected to temporary decision as a teacher signal and sequentially subject a signal subjected to linear equalization by the linear equalizer unit to nonlinear equalization based on the plurality of coefficients.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 17, 2013
    Assignee: JVC Kenwood Corporation
    Inventors: Atsushi Hayami, Makoto Itonaga
  • Publication number: 20120288408
    Abstract: A sample analysis disc has concave sections and convex sections formed alternately in a track area of a disc surface. Labeled beads are immobilized to the track area. Each labeled bead has a biopolymer bound thereto. Only one of the labeled beads is allowed to be filled in each concave section.
    Type: Application
    Filed: May 12, 2012
    Publication date: November 15, 2012
    Applicant: JVC KENWOOD Corporation a corporation of Japan
    Inventors: Masayuki ONO, Makoto ITONAGA, Koji TSUJITA, Yuichi HASEGAWA, Kunihisa MATSUZAKI
  • Publication number: 20120002712
    Abstract: A linear equalizer unit sequentially subjects a signal to be processed to linear equalization. A temporary decision unit sequentially subjects a signal subjected to linear equalization by the linear equalizer unit to temporary decision. A nonlinear equalizer unit derives a plurality of coefficients using a signal subjected to temporary decision as a teacher signal and sequentially subject a signal subjected to linear equalization by the linear equalizer unit to nonlinear equalization based on the plurality of coefficients.
    Type: Application
    Filed: March 18, 2010
    Publication date: January 5, 2012
    Applicant: VICTOR COMPANY OF JAPAN, LIMITED
    Inventors: Atsushi Hayami, Makoto Itonaga
  • Publication number: 20080165655
    Abstract: First order diffraction lights reflected on a first signal face for reproducing an optical disc and further deflected by a spatial divide element converge to spots 21a to 21d on photo acceptance cells 9A to 9D of a photodetector 9, while diffraction lights reflected on the first signal face and further diffracted by other orders of diffraction except plus first-order and diffraction lights reflected on a second signal face become crosstalk lights. Therefore, an optical pickup device is adapted so that minus (?) first-order diffraction lights 23a to 23d from the first signal face and the spots 21a to 21d of the first order diffraction light from the second signal face are not radiated on the photo acceptance cells 9A to 9D.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 10, 2008
    Inventors: Ryo Saitoh, Makoto Itonaga
  • Patent number: 7385904
    Abstract: A phase shift element has a tiered phase difference pattern portion, in which an inner circular side tiered phase difference pattern portion is continuously connected with an outer circular side tiered phase difference pattern portion based on a phase function curve obtained by a single phase-function with a wavelength having the same value as a reference wavelength ?1 of a first laser light being determined as a designed wavelength ?, formed in annular shapes on one surface thereof. A tier pitch of tiers of the inner circular side tiered phase difference pattern portion is set to a height corresponding to a phase difference of substantially 1? and, on the other hand, a tier pitch of tiers of the outer circular side tiered phase difference pattern portion is set to a height corresponding to a phase difference of substantially m? (where m is a natural number which does not include 0) or a height corresponding to the phase difference of substantially m? by changing a value of m for each step.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: June 10, 2008
    Assignee: Victor Company of Japan, Limited
    Inventor: Makoto Itonaga
  • Patent number: 7301882
    Abstract: When a wavelength having the same value as a reference wavelength ?1 of a first laser light is set to a designed wavelength ?, a diffractive optical element has: an inner circular side irregular diffraction pattern portion, in which a plurality of irregular portions in which a height of a convex portion is set to approximately 1?-fold of the designed wavelength ? with respect to a concave portion are repeated, being formed in an annular shape in an inner circular area having a predetermined diameter for the correction of a spherical aberration generated due to a difference in substrate thickness between first and second optical recording mediums centering on a central point through which an optical axis runs while gradually changing a pitch of the irregular portions in a radial direction toward the outer circular side; and an outer circular side tiered diffraction pattern portion which is intended to improve a chromatic aberration with respect to the first laser light by forming in an annular shape in an oute
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: November 27, 2007
    Assignee: Victor Company of Japan, Limited
    Inventor: Makoto Itonaga
  • Patent number: 7301881
    Abstract: First and second phase function curves are respectively obtained based on first and second phase functions with a wavelength having the same value as a reference wavelength ?1 of a first laser light being determined as a designed wavelength ?, a phase shift element then has an inner circular side tiered phase difference pattern portion formed in annular shapes in an inner circular area on one surface thereof based on the first phase function curve and an outer circular side tiered phase difference pattern portion formed in annular shapes in an outer circular area outside the inner circular side tiered phase difference pattern portion based on the second phase function curve.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: November 27, 2007
    Assignee: Victor Company of Japan, Limited
    Inventor: Makoto Itonaga
  • Patent number: 7239596
    Abstract: There is disclosed an optical pickup device including: a blue semiconductor laser which emits a first laser light having a wavelength of 450 nm or less to record on or reproduce from an extra-high density optical disc; a red semiconductor laser which emits a second laser light having a wavelength longer than that of the first laser light to record on or reproduce from a DVD having a low recording density; an objective lens; and an aberration correction element. The objective lens is designed for the extra-high density optical disc, and has a numerical aperture (NA) of 0.75 or more. The aberration correction element passes the first laser light as such and thereafter allows the light to be incident upon the objective lens, whereas the element limits an aperture with respect to the second laser light and diffracts the second laser light so as to correct an aberration with respect to the DVD and thereafter allows the light to be incident upon the objective lens.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: July 3, 2007
    Assignee: Victor Company of Japan, Limited
    Inventors: Ryo Saitoh, Fumihiko Ito, Yoshinari Yokochi, Makoto Itonaga
  • Patent number: 7233562
    Abstract: When an extra-high density optical disc, a DVD having a recording density lower than that of the extra-high density optical disc, a CD having a recording density lower than that of the DVD, and a combined optical recording medium in which the extra-high density optical disc, DVD, and CD are appropriately combined and integrally stacked are selectively recorded or reproduced by an objective lens whose numerical aperture (NA) is set to 0.75 or more, the objective lens satisfies the following expression: t<a·f+b wherein t: an axial thickness of the objective lens, f: a focal distance of the objective lens, a: a coefficient, and b: a constant, and the coefficient a and the constant b satisfies that a=2.02, b=?1.94; a=2.08, b=?1.84; or a=2.11, b=?1.77.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: June 19, 2007
    Assignee: Victor Company of Japan, Limited
    Inventor: Makoto Itonaga