Patents by Inventor Makoto Miyamori

Makoto Miyamori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140131326
    Abstract: An optical fiber fusion splicer includes a base having a fiber groove for containing an optical fiber, a fiber clamp for pressing the optical fiber contained in the fiber groove against the base and load changing means for changing a load for the fiber clamp to press the optical fiber.
    Type: Application
    Filed: June 28, 2012
    Publication date: May 15, 2014
    Applicant: SEI OPTIFRONTIER CO., LTD.
    Inventors: Ryuichiro Sato, Hiroshi Takayanagi, Makoto Miyamori
  • Patent number: 7699540
    Abstract: An optical fiber reinforcement processing apparatus and reinforcement processing method are provided where it is not necessary to dispose a temperature detecting device such as a thermistor, and a heating control in which the detected temperature is not varied, the power consumption is low, and which is accurate is enabled. An optical fiber reinforcement processing apparatus in which a fusion-spliced portion of an optical fiber is covered by a heat-shrinkable reinforcing sleeve to perform reinforcement has: heating controlling means for performing a heating control on a heater which heats the reinforcing sleeve; and temperature detecting means for detecting a heating temperature of the heater on the basis of a change of the resistance of the heater. The heating control and the temperature detection are performed by controlling time periods of turning on/off a power supply to the heater.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: April 20, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Makoto Miyamori, Kazunari Hattori
  • Publication number: 20090263088
    Abstract: A fusion splicer that can execute fusion splice and reinforcement preparations of optical fibers to be next subjected to reinforcement treatment efficiently at a proper timing by keeping track of the reinforcement treatment progress state to perform fusion splice and reinforcement treatment in parallel with each other is provided. A fusion splicer includes a fusion splicing device for butting optical fiber end parts against each other and fusing them and a reinforcement treatment device for reinforcing the optical fibers subjected to the fusion splice with a reinforcement sleeve covered thereon, and a display for monitoring the state of fusion splice comprises a display function of displaying the progress state of reinforcement treatment. The reinforcement treatment progress state is displayed as temperature rise, heat insulation, cooling information or is displayed as time information or temperature information.
    Type: Application
    Filed: April 13, 2007
    Publication date: October 22, 2009
    Inventors: Makoto Miyamori, Kazunari Hattori, Osamu Ikejima
  • Publication number: 20090052846
    Abstract: An optical fiber reinforcement processing apparatus and reinforcement processing method are provided where it is not necessary to dispose a temperature detecting device such as a thermistor, and a heating control in which the detected temperature is not varied, the power consumption is low, and which is accurate is enabled. An optical fiber reinforcement processing apparatus in which a fusion-spliced portion of an optical fiber is covered by a heat-shrinkable reinforcing sleeve to perform reinforcement has: heating controlling means for performing a heating control on a heater which heats the reinforcing sleeve; and temperature detecting means for detecting a heating temperature of the heater on the basis of a change of the resistance of the heater. The heating control and the temperature detection are performed by controlling time periods of turning on/off a power supply to the heater.
    Type: Application
    Filed: May 16, 2007
    Publication date: February 26, 2009
    Inventors: Makoto Miyamori, Kazunari Hattori
  • Patent number: 5793154
    Abstract: A field emission element including a gate and an emitter and capable of penting any of the element oxide layer from being formed on a tip of the emitter to prevent a decrease in emission current, unstable operation and an increase in noise. The gate has a surface formed of a material of oxygen bonding strength higher than that of a material for at least a tip surface of the emitter, so that oxygen atoms and molecules containing oxygen entering the gate may be captured by adsorption on the gate to prevent formation of any oxide layer on the emitter. When a portion of the emitter other than the tip surface is formed of a material of oxygen bonding strength higher than that of the material for the tip surface, formation of any oxide layer on the tip surface of the emitter is minimized.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 11, 1998
    Assignees: Futaba Denshi Kogyo K.K., Electronical Laboratory, Agency of Industrial Science and Technology
    Inventors: Shigeo Itoh, Teruo Watanabe, Makoto Miyamori, Norio Nishimura, Junji Itoh, Seigo Kanemaru
  • Patent number: 5469014
    Abstract: A field emission element including a gate and an emitter and capable of preventing any of the element oxide layer from being formed on a tip of the emitter to prevent a decrease in emission current, unstable operation and an increase in noise. The gate has a surface formed of a material of oxygen bonding strength higher than that of a material for at least a tip surface of the emitter, so that oxygen atoms and molecules containing oxygen entering the gate may be captured by adsorption on the gate to prevent formation of any oxide layer on the emitter. When a portion of the emitter other than the tip surface is formed of a material of oxygen bonding strength higher than that of the material for the tip surface, formation of any oxide layer on the tip surface of the emitter is minimized.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: November 21, 1995
    Inventors: Shigeo Itoh, Teruo Watanabe, Makoto Miyamori, Norio Nishimura, Junji Itoh, Seigo Kanemaru