Patents by Inventor Makoto Nakane

Makoto Nakane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710587
    Abstract: An R-T-B based permanent magnet in which R is a rare earth element, T is Fe and Co, and B is boron. R at least includes Dy. The R-T-B based permanent magnet includes M, and M is at least one or more elements selected from the group consisting of Cu, Ga, Al, Mn, Zr, Ti, Cr, Ni, Nb, Ag, Hf, Ta, W, Si, Bi, and Sn. M at least includes Cu. A total content of R is 28.0 mass % to 30.2 mass %, a content of Dy is 1.0 mass % to 6.5 mass %, a content of Cu is 0.04 mass % to 0.50 mass %, a content of Co is 0.5 mass % to 3.0 mass %, and a content of B is 0.85 mass % to 0.95 mass %.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: July 25, 2023
    Assignee: TDK CORPORATION
    Inventors: Hiroshi Doto, Kiyoyuki Masuzawa, Makoto Nakane
  • Patent number: 11232889
    Abstract: An A R-T-B based permanent magnet, wherein R is a rare earth element, T is Fe and Co, and B is boron. R at least includes Dy and Tb. The R-T-B based permanent magnet includes M, and M is one or more elements selected from the group made of Cu, Ga, Al, Mn, Zr, Ti, Cr, Ni, Nb, Ag, Hf, Ta, W, Si, Bi, and Sn. M at least includes Cu. A total content of R is 28.05 mass % to 30.60 mass %, a content of Dy is 1.0 mass % to 6.5 mass %, a content of Cu is 0.04 mass % to 0.50 mass %, a content of Co is 0.5 mass % to 3.0 mass %, and a content of B is 0.85 mass % to 0.95 mass %. A concentration distribution of Tb decreases from an outer side towards an inner side of the R-T-B based permanent magnet.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: January 25, 2022
    Assignee: TDK CORPORATION
    Inventors: Hiroshi Doto, Kiyoyuki Masuzawa, Makoto Nakane
  • Patent number: 10672544
    Abstract: An object of the present invention is to provide an R-T-B based permanent magnet showing high residual magnetic flux density Br and coercive force HcJ. Provided is an R-T-B based permanent magnet in which, R is a rare earth element, T is an element other than the rare earth element, B, C, O or N, and B is boron. R at least includes Tb and T at least includes Fe, Cu, Co and Ga, and a total of R content is 28.05 to 30.60 mass %, Cu content is 0.04 to 0.50 mass %, Co content is 0.5 to 3.0 mass %, Ga content is 0.08 to 0.30 mass %, and B content is 0.85 to 0.95 mass %, relative to 100 mass % of a total mass of R, T and B, and Tb concentration reduces from outside to inside of the R-T-B based permanent magnet.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 2, 2020
    Assignee: TDK CORPORATION
    Inventors: Kiyoyuki Masusawa, Makoto Nakane
  • Patent number: 10672545
    Abstract: An object of the present invention is to provide an R-T-B based permanent magnet showing high residual magnetic flux density Br and coercive force HcJ, and further showing the same also after heavy rare earth element is diffused along grain boundaries. Provided is an R-T-B based permanent magnet in which, R is a rare earth element, T is an element other than the rare earth element, B, C, O or N, and B is boron. T at least includes Fe, Cu, Co and Ga, and a total of R content is 28.0 to 30.2 mass %, Cu content is 0.04 to 0.50 mass %, Co content is 0.5 to 3.0 mass %, Ga content is 0.08 to 0.30 mass %, and B content is 0.85 to 0.95 mass %, relative to 100 mass % of a total mass of R, T and B.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 2, 2020
    Assignee: TDK CORPORATION
    Inventors: Kiyoyuki Masusawa, Makoto Nakane
  • Publication number: 20190172616
    Abstract: An R-T-B based permanent magnet in which R is a rare earth element, T is Fe and Co, and B is boron. R at least includes Dy. The R-T-B based permanent magnet includes M, and M is at least one or more elements selected from the group consisting of Cu, Ga, Al, Mn, Zr, Ti, Cr, Ni, Nb, Ag, Hf, Ta, W, Si, Bi, and Sn. M at least includes Cu. A total content of R is 28.0 mass % to 30.2 mass %, a content of Dy is 1.0 mass % to 6.5 mass %, a content of Cu is 0.04 mass % to 0.50 mass %, a content of Co is 0.5 mass % to 3.0 mass %, and a content of B is 0.85 mass % to 0.95 mass %.
    Type: Application
    Filed: November 28, 2018
    Publication date: June 6, 2019
    Applicant: TDK CORPORATION
    Inventors: Hiroshi DOTO, Kiyoyuki MASUZAWA, Makoto NAKANE
  • Publication number: 20190172615
    Abstract: An A R-T-B based permanent magnet, wherein R is a rare earth element, T is Fe and Co, and B is boron. R at least includes Dy and Tb. The R-T-B based permanent magnet includes M, and M is one or more elements selected from the group made of Cu, Ga, Al, Mn, Zr, Ti, Cr, Ni, Nb, Ag, Hf, Ta, W, Si, Bi, and Sn. M at least includes Cu. A total content of R is 28.05 mass % to 30.60 mass %, a content of Dy is 1.0 mass % to 6.5 mass %, a content of Cu is 0.04 mass % to 0.50 mass %, a content of Co is 0.5 mass % to 3.0 mass %, and a content of B is 0.85 mass % to 0.95 mass %. A concentration distribution of Tb decreases from an outer side towards an inner side of the R-T-B based permanent magnet.
    Type: Application
    Filed: November 28, 2018
    Publication date: June 6, 2019
    Applicant: TDK CORPORATION
    Inventors: Hiroshi DOTO, Kiyoyuki MASUZAWA, Makoto NAKANE
  • Publication number: 20180158582
    Abstract: An object of the present invention is to provide an R-T-B based permanent magnet showing high residual magnetic flux density Br and coercive force HcJ. Provided is an R-T-B based permanent magnet in which, R is a rare earth element, T is an element other than the rare earth element, B, C, O or N, and B is boron. R at least includes Tb and T at least includes Fe, Cu, Co and Ga, and a total of R content is 28.05 to 30.60 mass %, Cu content is 0.04 to 0.50 mass %, Co content is 0.5 to 3.0 mass %, Ga content is 0.08 to 0.30 mass %, and B content is 0.85 to 0.95 mass %, relative to 100 mass % of a total mass of R, T and B, and Tb concentration reduces from outside to inside of the R-T-B based permanent magnet.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 7, 2018
    Applicant: TDK CORPORATION
    Inventors: Kiyoyuki MASUSAWA, Makoto NAKANE
  • Publication number: 20180158583
    Abstract: An object of the present invention is to provide an R-T-B based permanent magnet showing high residual magnetic flux density Br and coercive force HcJ, and further showing the same also after heavy rare earth element is diffused along grain boundaries. Provided is an R-T-B based permanent magnet in which, R is a rare earth element, T is an element other than the rare earth element, B, C, O or N, and B is boron. T at least includes Fe, Cu, Co and Ga, and a total of R content is 28.0 to 30.2 mass %, Cu content is 0.04 to 0.50 mass %, Co content is 0.5 to 3.0 mass %, Ga content is 0.08 to 0.30 mass %, and B content is 0.85 to 0.95 mass %, relative to 100 mass % of a total mass of R, T and B.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 7, 2018
    Applicant: TDK CORPORATION
    Inventors: Kiyoyuki MASUSAWA, Makoto NAKANE
  • Patent number: 8152936
    Abstract: There is provided a rare earth magnet with excellent Br and HcJ values. The rare earth magnet according to a preferred embodiment of the invention is characterized by being composed mainly of R (where R is at least one element selected from among rare earth elements including Y), B, Al, Cu, Zr, Co, O, C and Fe, wherein the content of each element is R: 25-34 wt %, B: 0.85-0.98 wt %, Al: 0.03-0.3 wt %, Cu: 0.01-0.15 wt %, Zr: 0.03-0.25 wt %, Co: ?3 wt % (but not 0 wt %), O: ?0.2 wt %, C: 0.03-0.15 wt % and Fe: remainder.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 10, 2012
    Assignee: TDK Corporation
    Inventors: Taeko Tsubokura, Makoto Iwasaki, Makoto Nakane, Fumitaka Baba
  • Publication number: 20100233016
    Abstract: There is provided a rare earth magnet with excellent Br and HcJ values. The rare earth magnet according to a preferred embodiment of the invention is characterized by being composed mainly of R (where R is at least one element selected from among rare earth elements including Y), B, Al, Cu, Zr, Co, O, C and Fe, wherein the content of each element is R: 25-34 wt %, B: 0.85-0.98 wt %, Al: 0.03-0.3 wt %, Cu: 0.01-0.15 wt %, Zr: 0.03-0.25 wt %, Co: ?3 wt % (but not 0 wt %), O: ?0.2 wt %, C: 0.03-0.15 wt % and Fe: remainder.
    Type: Application
    Filed: June 27, 2008
    Publication date: September 16, 2010
    Applicant: TDK Corporation
    Inventors: Taeko Tsubokura, Makoto Iwasaki, Makoto Nakane, Fumitaka Baba
  • Publication number: 20100129538
    Abstract: The invention provides a process for producing a magnet that not only allows satisfactory Br and HcJ values to be achieved but can also yield a magnet with a sufficiently large squareness ratio. The process for producing a magnet according to the invention is characterized by comprising a first step in which a heavy rare earth compound containing a heavy rare earth element is adhered onto a rare earth magnet sintered compact, and a second step in which the heavy rare earth compound-adhered sintered compact is subjected to heat treatment. The heavy rare earth compound is a hydride of the heavy rare earth element.
    Type: Application
    Filed: March 31, 2008
    Publication date: May 27, 2010
    Applicant: TDK CORPORATION
    Inventors: Ryota Kunieda, Makoto Nakane, Fumitaka Baba, Makoto Iwasaki, Satoshi Tanaka, Hideki Nakamura
  • Patent number: 7465363
    Abstract: A single phase consisting of a ThMn12 phase can be obtained by having the composition thereof represented by a general formula R(Fe100-y-wCowTiy)xSizAv (in the general formula, R is at least one element selected from rare earth elements (here the rare earth elements signify a concept inclusive of Y), Nd accounts for 50 mol % or more of R, and A is N and/or C) in which the molar ratios in the general formula are such that x=10 to 12.5, y=(8.3?1.7×z) to 12.3, z=0.1 to 2.3, v=0.1 to 3 and w=0 to 30, and the relation (Fe+Co+Ti+Si)/R>12 is satisfied.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: December 16, 2008
    Assignee: TDK Corporation
    Inventors: Atsushi Sakamoto, Makoto Nakane, Hideki Nakamura, Akira Fukuno
  • Publication number: 20060169360
    Abstract: A single phase consisting of a ThMn12 phase can be obtained by having the composition thereof represented by a general formula R(Fe100-y-wCowTiy)xSizAv (in the general formula, R is at least one element selected from rare earth elements (here the rare earth elements signify a concept inclusive of Y), Nd accounts for 50 mol % or more of R, and A is N and/or C) in which the molar ratios in the general formula are such that x=10 to 12.5, y=(8.3?1.7×z) to 12.3, z=0.1 to 2.3, v=0.1 to 3 and w=0 to 30, and the relation (Fe+Co+Ti+Si)/R>12 is satisfied.
    Type: Application
    Filed: January 28, 2004
    Publication date: August 3, 2006
    Inventors: Atsushi Sakamoto, Makoto Nakane, Hideki Nakamura, Akira Fukuno
  • Patent number: 6833036
    Abstract: A rare earth permanent magnet consists of 20-40 wt % of at least one rare earth element R, 0.5-4.5 wt % of boron B, 0.03-0.5 wt % of M (at least one of Al, Cu, Sn and Ga), 0.01-0.2 wt % of Bi, and the balance being at least one transition metal element T.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: December 21, 2004
    Assignee: TDK Corporation
    Inventors: Makoto Nakane, Eiji Kato, Chikara Ishizaka, Akira Fukuno
  • Publication number: 20030141951
    Abstract: A rare earth permanent magnet consists of 20-40 wt % of at least one rare earth element R, 0.5-4.5 wt % of boron B, 0.03-0.5 wt % of M (at least one of Al, Cu, Sn and Ga), 0.01-0.2 wt % of Bi, and the balance being at least one transition metal element T.
    Type: Application
    Filed: June 27, 2002
    Publication date: July 31, 2003
    Inventors: Makoto Nakane, Eiji Kato, Chikara Ishizaka, Akira Fukuno