Patents by Inventor Makoto Toriyama

Makoto Toriyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794354
    Abstract: In an ignition control apparatus, a control unit controls switching elements so as to supply a primary current to the other end side of a primary winding opposite to one end thereof connected to a DC power source by discharging (which is performed by turning on a second switching element stored energy from a capacitor during ignition discharge (which is started by turning off a first switching element. In particular, the control unit controls the second switching element or the third switching element so as to provide variability to the amount of stored energy discharged from the capacitor according to an operating state of an internal combustion engine.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 6, 2020
    Assignee: DENSO CORPORATION
    Inventors: Satoru Nakayama, Makoto Toriyama, Akimitsu Sugiura, Masahiro Ishitani, Yuuki Kondou
  • Patent number: 10539114
    Abstract: An ignition apparatus inputs energy during a predetermined energy input period after the interruption of a primary electric current by an ignition switch and a discharge of an ignition plug caused by a secondary electric current. Moreover, the ignition apparatus includes a blow-off detection unit that detects, during the energy input period IGW after the start of the discharge by the ignition plug, occurrence of blow-off of the discharge. When the secondary electric current I2 drops below a blow-off detection electric current threshold value Ibo at a time instant tbo in a “second region” where it is impossible to perform a re-discharge after blow-off, the blow-off detection unit determines that blow-off has occurred and the ignition apparatus stops the energy input from an energy input unit to an ignition coil. By preventing unnecessary energy input, it is possible to suppress unnecessary electric power consumption and wear of electrodes of the ignition plug.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 21, 2020
    Assignee: DENSO CORPORATION
    Inventors: Naoto Hayashi, Makoto Toriyama, Kaori Doi, Kanechiyo Terada, Kenta Kyouda, Satoru Nakayama
  • Patent number: 10302062
    Abstract: An ignition control apparatus of the present embodiment controls operation of an ignition plug provided so as to ignite an air-fuel mixed gas.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 28, 2019
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Ishitani, Akimitsu Sugiura, Makoto Toriyama, Satoru Nakayama, Yuuki Kondou, Hisaharu Morita, Naoto Hayashi, Yuuto Tamei, Takashi Oono, Shunichi Takeda
  • Patent number: 10288033
    Abstract: When an abnormality judgement section judges that there is a failure of an energy inputting circuit, an energy inputting line, through which electrical energy is inputted from the energy inputting circuit to a primary winding, is changed over to a disconnected state by output halt switching means. As a result, since inputting of electrical energy to the primary winding is thereby halted, problems arising due to continuation of inputting electrical energy to the energy inputting circuit can be prevented, even in the event of a failure of the energy inputting circuit, so that reliability can be enhanced.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: May 14, 2019
    Assignee: DENSO CORPORATION
    Inventors: Makoto Toriyama, Satoru Nakayama
  • Patent number: 10161376
    Abstract: An ignition control apparatus for engines is provided. The ignition control apparatus is designed to control a switch to release energy stored in a capacitor during spark discharge, thereby supplying a primary current to an other end side opposite a one end of a primary winding of an ignition coil connected to a dc power supply. This provides the ignition control apparatus which is capable of minimizing an increase in size or manufacturing cost and stabilizing the state of combustion of an air-fuel mixture.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: December 25, 2018
    Assignee: DENSO CORPORATION
    Inventors: Satoru Nakayama, Makoto Toriyama, Akimitsu Sugiura, Masahiro Ishitani, Yuuki Kondou
  • Patent number: 10082125
    Abstract: In a control apparatus, a discharge control unit controls an igniter unit so that a flow of current from a primary coil towards a ground side is blocked, thereby generating a high voltage in a secondary coil, and controls a spark plug so that the spark plug generates electric discharge. An energy input control unit controls an energy input unit so as to input electrical energy to an ignition coil after the start of control of the spark plug by the discharge control unit. A control unit and an abnormality detecting unit detects an abnormality in the igniter unit or the ignition coil based on a first threshold and a first current value that is a value corresponding to a current detected by a current detection circuit at this time, when a first predetermined period elapses after the start of control of the spark plug by the discharge control unit.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: September 25, 2018
    Assignee: DENSO CORPORATION
    Inventors: Hidekazu Fujimoto, Makoto Toriyama, Satoru Nakayama, Yasuomi Imanaka, Kanechiyo Terada, Shunichi Takeda, Kaori Doi, Junichi Wada, Hisaharu Morita, Naohisa Nakamura
  • Patent number: 10041463
    Abstract: According to an ignition device, a first switching unit applies a voltage between electrodes of by spark plug by turning on/off energization from an on-vehicle battery to a primary coil. Further, a second switching unit applies a voltage having the same direction as a spark discharge generated by turning on/off the first switching unit between the electrodes of the spark plug by supplying electrical energy accumulated in a booster circuit into a primary coil. Accordingly, it is possible to greatly reduce a complexity of the on/off switching of the first and second switching units compared to a conventional technology.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: August 7, 2018
    Assignee: DENSO CORPORATION
    Inventors: Makoto Toriyama, Shunichi Takeda, Kanechiyo Terada, Satoru Nakayama, Takashi Oono
  • Publication number: 20180180014
    Abstract: An ignition apparatus inputs energy during a predetermined energy input period after the interruption of a primary electric current by an ignition switch and a discharge of an ignition plug caused by a secondary electric current. Moreover, the ignition apparatus includes a blow-off detection unit that detects, during the energy input period IGW after the start of the discharge by the ignition plug, occurrence of blow-off of the discharge. When the secondary electric current I2 drops below a blow-off detection electric current threshold value Ibo at a time instant tbo in a “second region” where it is impossible to perform a re-discharge after blow-off, the blow-off detection unit determines that blow-off has occurred and the ignition apparatus stops the energy input from an energy input unit to an ignition coil. By preventing unnecessary energy input, it is possible to suppress unnecessary electric power consumption and wear of electrodes of the ignition plug.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Naoto HAYASHI, Makoto TORIYAMA, Kaori DOI, Kenechiyo TERADA, Kenta KYOUDA, Satoru NAKAYAMA
  • Patent number: 9995267
    Abstract: An ignition apparatus includes an adjuster. The adjuster adjusts, according to at least one of a primary voltage and a secondary voltage detected by a voltage detector, at least one of an application timing and an application level of auxiliary electrical energy to an ignition coil while main electrical energy is applied to a spark plug by the ignition coil. The application timing includes whether the auxiliary electrical energy is applied to the ignition coil.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: June 12, 2018
    Assignee: DENSO CORPORATION
    Inventors: Yuuki Kondou, Masahiro Ishitani, Satoru Nakayama, Akimitsu Sugiura, Makoto Toriyama, Takashi Oono
  • Patent number: 9932955
    Abstract: An ignition apparatus inputs energy during a predetermined energy input period after the interruption of a primary electric current by an ignition switch and a discharge of an ignition plug caused by a secondary electric current. Moreover, the ignition apparatus includes a blow-off detection unit that detects, during the energy input period IGW after the start of the discharge by the ignition plug, occurrence of blow-off of the discharge. When the secondary electric current I2 drops below a blow-off detection electric current threshold value Ibo at a time instant tbo in a “second region” where it is impossible to perform a re-discharge after blow-off, the blow-off detection unit determines that blow-off has occurred and the ignition apparatus stops the energy input from an energy input unit to an ignition coil. By preventing unnecessary energy input, it is possible to suppress unnecessary electric power consumption and wear of electrodes of the ignition plug.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: April 3, 2018
    Assignee: DENSO CORPORATION
    Inventors: Naoto Hayashi, Makoto Toriyama, Kaori Doi, Kenechiyo Terada, Kenta Kyouda, Satoru Nakayama
  • Patent number: 9897062
    Abstract: An ignition device at least equipped with a DC power source, an ignition coil unit, a spark plug, an ignition switch, and an auxiliary power source, wherein the auxiliary power source is at least equipped with a discharge energy accumulating means, a discharge switch, and a discharge driver. The ignition device is further equipped with a secondary-current feedback controlling means comprising a secondary current detecting means for detecting a secondary current flowing during the ignition coil unit discharge period, and a secondary current feedback control circuit-for determining an upper limit and a lower limit for the secondary current from binary threshold values, and driving so as to open and close the discharge switch on the basis of the determination results. Furthermore, energy is introduced from the auxiliary power source without switching the polarity of the secondary current.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: February 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Satoru Nakayama, Makoto Toriyama, Akimitsu Sugiura, Masahiro Ishitani, Atsuya Mizutani, Kouji Andoh, Naoto Hayashi, Kaori Doi
  • Publication number: 20170342955
    Abstract: An ignition control apparatus of the present embodiment controls operation of an ignition plug provided so as to ignite an air-fuel mixed gas.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Masahiro ISHITANI, Akimitsu SUGIURA, Makoto TORIYAMA, Satoru NAKAYAMA, Yuuki KONDOU, Hisaharu MORITA, Naoto HAYASHI, Yuuto TAMEI, Takashi OONO, Shunichi TAKEDA
  • Patent number: 9822753
    Abstract: An ignition control device includes a control unit to control first to third switching elements so that during ignition discharge, which is started by turning off the first switching element, energy stored on a capacitor is discharged by turning off the third switching element and turning on the second switching element for supplying a primary current to an end of a primary winding opposite to an end thereof connected to a direct-current power supply. During inductive discharge of a spark plug, the control unit non-intermittently turns on the second switching element so that the second switching element is turned on over a successive energy input time period, according to the operating conditions of an internal combustion engine.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: November 21, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Ishitani, Akimitsu Sugiura, Makoto Toriyama, Satoru Nakayama, Yuuki Kondou
  • Patent number: 9771918
    Abstract: It is possible to adjust electromagnetic energy introduced from a low-voltage side of a primary winding 20 of an ignition coil 2 after start discharging to a spark plug 1 from the ignition coil 2 in the correct proportion by threshold-determining either one or both of a primary voltage V1 applied to a primary side of the ignition coil 2 and a secondary current I2 flowing in a secondary side of the ignition coil 2, and by opening and closing a discharging switch 32 disposed between an auxiliary power supply 3 including an energy storage coil 330 and a low-voltage side terminal 201 of the ignition coil 2.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: September 26, 2017
    Assignee: DENSO CORPORATION
    Inventors: Satoru Nakayama, Makoto Toriyama, Akimitsu Sugiura, Masahiro Ishitani, Yuuki Kondou, Kanechiyo Terada
  • Patent number: 9765748
    Abstract: An ignition control device comprises: a first switching element having a power source side terminal connected to an other end side of a primary coil and a first ground side terminal connected to a ground side; a second switching element having a second ground side terminal connected to the other end side of the primary coil; a third switching element having a third power source side terminal connected to the second power source side terminal in the second switching element, and a third ground side terminal connected to the ground side; and an energy storage coil. The energy storage coil is an inductor interposed in an electric power line connecting a non-ground side output terminal in a DC power source and the third power source side terminal in the third switching element, and stores energy from the turning on of the third switching element.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: September 19, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Ishitani, Akimitsu Sugiura, Makoto Toriyama, Satoru Nakayama, Yuuki Kondou, Hisaharu Morita, Naoto Hayashi, Yuuto Tamei, Takashi Oono, Shunichi Takeda
  • Publication number: 20170159634
    Abstract: In a control apparatus, a discharge control unit controls an igniter unit so that a flow of current from a primary coil towards a ground side is blocked, thereby generating a high voltage in a secondary coil, and controls a spark plug so that the spark plug generates electric discharge. An energy input control unit controls an energy input unit so as to input electrical energy to an ignition coil after the start of control of the spark plug by the discharge control unit. A control unit and an abnormality detecting unit detects an abnormality in the igniter unit or the ignition coil based on a first threshold and a first current value that is a value corresponding to a current detected by a current detection circuit at this time, when a first predetermined period elapses after the start of control of the spark plug by the discharge control unit.
    Type: Application
    Filed: April 9, 2015
    Publication date: June 8, 2017
    Applicant: DENSO CORPORATION
    Inventors: Hidekazu FUJIMOTO, Makoto TORIYAMA, Satoru NAKAYAMA, Yasuomi IMANAKA, Kanechiyo TERADA, Shunichi TAKEDA, Kaori DOI, Junichi WADA, Hisaharu MORITA, Naohisa NAKAMURA
  • Publication number: 20170045025
    Abstract: An ignition device at least equipped with a DC power source, an ignition coil unit, a spark plug, an ignition switch, and an auxiliary power source, wherein the auxiliary power source is at least equipped with a discharge energy accumulating means, a discharge switch, and a discharge driver. The ignition device is further equipped with a secondary-current feedback controlling means comprising a secondary current detecting means for detecting a secondary current flowing during the ignition coil unit discharge period, and a secondary current feedback control circuit-for determining an upper limit and a lower limit for the secondary current from binary threshold values, and driving so as to open and close the discharge switch on the basis of the determination results. Furthermore, energy is introduced from the auxiliary power source without switching the polarity of the secondary current.
    Type: Application
    Filed: November 28, 2014
    Publication date: February 16, 2017
    Inventors: Satoru NAKAYAMA, Makoto TORIYAMA, Akimitsu SUGIURA, Masahiro ISHITANI, Atsuya MIZUTANI, Kouji ANDOH, Naoto HAYASHI, Kaori DOI
  • Publication number: 20170030319
    Abstract: When an abnormality judgement section judges that there is a failure of an energy inputting circuit, an energy inputting line, through which electrical energy is inputted from the energy inputting circuit to a primary winding, is changed over to a disconnected state by output halt switching means. As a result, since inputting of electrical energy to the primary winding is thereby halted, problems arising due to continuation of inputting electrical energy to the energy inputting circuit can be prevented, even in the event of a failure of the energy inputting circuit, so that reliability can be enhanced.
    Type: Application
    Filed: April 10, 2015
    Publication date: February 2, 2017
    Inventors: Makoto TORIYAMA, Satoru NAKAYAMA
  • Publication number: 20170022961
    Abstract: According to an ignition device, a first switching unit applies a voltage between electrodes of by spark plug by turning on/off energization from an on-vehicle battery to a primary coil. Further, a second switching unit applies a voltage having the same direction as a spark discharge generated by turning on/off the first switching unit between the electrodes of the spark plug by supplying electrical energy accumulated in a booster circuit into a primary coil. Accordingly, it is possible to greatly reduce a complexity of the on/off switching of the first and second switching units compared to a conventional technology.
    Type: Application
    Filed: April 9, 2015
    Publication date: January 26, 2017
    Applicant: Denso Corporation
    Inventors: Makoto TORIYAMA, Shunichi TAKEDA, Kanechiyo TERADA, Satoru NAKAYAMA, Takashi OONO
  • Publication number: 20170022957
    Abstract: An ignition apparatus inputs energy during a predetermined energy input period after the interruption of a primary electric current by an ignition switch and a discharge of an ignition plug caused by a secondary electric current. Moreover, the ignition apparatus includes a blow-off detection unit that detects, during the energy input period IGW after the start of the discharge by the ignition plug, occurrence of blow-off of the discharge. When the secondary electric current I2 drops below a blow-off detection electric current threshold value Ibo at a time instant tbo in a “second region” where it is impossible to perform a re-discharge after blow-off, the blow-off detection unit determines that blow-off has occurred and the ignition apparatus stops the energy input from an energy input unit to an ignition coil. By preventing unnecessary energy input, it is possible to suppress unnecessary electric power consumption and wear of electrodes of the ignition plug.
    Type: Application
    Filed: April 7, 2015
    Publication date: January 26, 2017
    Inventors: Naoto HAYASHI, Makoto TORIYAMA, Kaori DOI, Kenechiyo TERADA, Kenta KYOUDA, Satoru NAKAYAMA