Patents by Inventor Maksim Skorobogatiy

Maksim Skorobogatiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090097809
    Abstract: A method for fabricating a terahertz waveguide comprises forming a multilayer reflector formed of alternating layers of first and second polymer materials with distinct refractive indices, and defining with the multilayer reflector a hollow core through which terahertz radiation propagates. The corresponding terahertz waveguide comprises the multilayer reflector formed of the alternating layers of the first and second polymer materials with distinct refractive indices, and a hollow core defined by the multilayer reflector and through which terahertz radiation propagates.
    Type: Application
    Filed: June 26, 2008
    Publication date: April 16, 2009
    Applicant: CORPORATION DE L'ECOLE POLYTECHNIQUE DE MONTREAL
    Inventors: Maksim Skorobogatiy, Alexandre Dupuis
  • Patent number: 7460238
    Abstract: A sensor and method for surface plasmon resonance sensing, wherein a small variation of the refractive index of an ambient medium results in a large variation of loss of a sensing mode. The surface plasmon resonance sensor comprises an antiguiding waveguide including a core characterized by a refractive index and a reflector surrounding the core. The reflector has an external surface and is characterized by a band gap and a refractive index higher than the refractive index of the core. A coating is deposited on the external surface of the core, the coating defining with the ambient medium a coating/ambient medium interface. In operation, the coating is in contact with the ambient medium, and the antiguiding waveguide is supplied with an electromagnetic radiation to (a) propagate a mode for sensing having an effective refractive index lower than the refractive index of the core and higher than a refractive index of an ambient medium and (b) produce surface plasmons at the coating/ambient medium interface.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: December 2, 2008
    Assignee: Corporation De L'ecole Polytechnique De Montreal
    Inventors: Maksim Skorobogatiy, Andrei V. Kabashin
  • Publication number: 20080266567
    Abstract: A sensor and method for surface plasmon resonance sensing, wherein a small variation of the refractive index of an ambient medium results in a large variation of loss of a sensing mode. The surface plasmon resonance sensor comprises an antiguiding waveguide including a core characterized by a refractive index and a reflector surrounding the core. The reflector has an external surface and is characterized by a band gap and a refractive index higher than the refractive index of the core. A coating is deposited on the external surface of the core, the coating defining with the ambient medium a coating/ambient medium interface. In operation, the coating is in contact with the ambient medium, and the antiguiding waveguide is supplied with an electromagnetic radiation to (a) propagate a mode for sensing having an effective refractive index lower than the refractive index of the core and higher than a refractive index of an ambient medium and (b) produce surface plasmons at the coating/ambient medium interface.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 30, 2008
    Inventors: Maksim Skorobogatiy, Andrei V. Kabashin
  • Patent number: 7231122
    Abstract: In general, in one aspect, the invention features an apparatus that includes a photonic crystal fiber configured to guide a mode of electromagnetic radiation at a wavelength, ?, along a waveguide axis. The fiber includes a core extending along the waveguide axis, and a confinement region extending along the waveguide axis and surrounding the core. The confinement region includes alternating layers of a first and a second dielectric material having thicknesses d1 and d2 and different refractive indices n1 and n2, respectively. The thickness of at least one of the alternating layers of the first material differs from thickness d1QW or at least one of the alternating layers of the second material differs from thickness d2QW, where d1QW and d2QW correspond to a quarter-wave condition for the two dielectric materials given by d1QW=?/(4?{square root over (n12?1)}) and d2QW=?/(4?{square root over (n22?1)}), respectively.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: June 12, 2007
    Assignee: OmniGuide, Inc.
    Inventors: Ori Weisberg, Steven A. Jacobs, Maksim Skorobogatiy, Steven G. Johnson, Uri Kolodny
  • Patent number: 7079308
    Abstract: A device for converting frequency of electromagnetic radiation includes a nonlinear medium that forms a moving grating in the nonlinear medium by introducing at opposite ends of the nonlinear medium a first set of electromagnetic radiation having varying frequencies. Electromagnetic radiation is inputted into the nonlinear medium at a first frequency and extracted at a second frequency from the nonlinear medium. The moving grating in the nonlinear medium allows for electromagnetic radiation to be converted into the second frequency.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: July 18, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Evan Reed, Marin Soljacic, John D. Joannopoulos, Steven G. Johnson, Maksim Skorobogatiy
  • Patent number: 7072553
    Abstract: An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4? and 80?, wherein ? is a wavelength corresponding to a central frequency in the first frequency range.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: July 4, 2006
    Assignee: OmniGuide Communications
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Publication number: 20050271340
    Abstract: In general, in one aspect, the invention features an apparatus that includes a photonic crystal fiber configured to guide a mode of electromagnetic radiation at a wavelength, ?, along a waveguide axis. The fiber includes a core extending along the waveguide axis, and a confinement region extending along the waveguide axis and surrounding the core. The confinement region includes alternating layers of a first and a second dielectric material having thicknesses d1 and d2 and different refractive indices n1 and n2, respectively. The thickness of at least one of the alternating layers of the first material_differs from thickness d1QW or at least one of the alternating layers of the second material_differs from thickness d2QW, where d1QW and d2QW correspond to a quarter-wave condition for the two dielectric materials given by d1QW=?/(4{square root}{square root over (n12?1)}) and d2QW=?/(4{square root}{square root over (n22?1)}), respectively.
    Type: Application
    Filed: November 1, 2004
    Publication date: December 8, 2005
    Inventors: Ori Weisberg, Steven Jacobs, Maksim Skorobogatiy, Steven Johnson, Uri Kolodny
  • Patent number: 6912331
    Abstract: By judicious engineering of grating parameters such as tooth shape, duty cycle and phase offset, the grating strengths and effective indices of the polarization modes of a grated waveguide are adjusted over a wide range of values to achieve a desired level of polarization sensitivity, or insensitivity. In the typical example, the physical geometry of the grating teeth is adjusted so that degenerate behavior (nTE=nTM and ?TE=?TM) is obtained for two polarization modes; the effective refractive indices and grating strengths are matched for the TE and TM polarization modes. In the current embodiment the sidewall gratings are used in which the tooth profile is selected in order to equalize the grating strength for each polarization mode.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: June 28, 2005
    Assignee: Cambrius Inc.
    Inventors: Dale G. Fried, Jean-Francois Viens, James S. Foresi, Maksim A Skorobogatiy, Michael H. Lim
  • Patent number: 6898359
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 24, 2005
    Assignee: OmniGuide Communications
    Inventors: Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman, Wesley A. King, Emilia Anderson, John D. Joannopoulos
  • Patent number: 6895154
    Abstract: An optical waveguide having a working mode with a tailored dispersion profile, the waveguide including: (i) a dielectric confinement region surrounding a waveguide axis, the confinement region comprising a photonic crystal having at least one photonic bandgap, wherein during operation the confinement region guides EM radiation in a first range of frequencies to propagate along the waveguide axis; (ii) a dielectric core region extending along the waveguide axis and surrounded by the confinement region about the waveguide axis, wherein the core supports at least one guided mode in the first frequency range; and (iii) a dielectric dispersion tailoring region surrounded by the confinement region about the waveguide axis, wherein the dispersion tailoring region introduces one or more additional modes in the first range of frequencies that interact with the guided mode to produce the working mode.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: May 17, 2005
    Assignee: OmniGuide Communications
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopolous, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Publication number: 20050030613
    Abstract: A device for converting frequency of electromagnetic radiation includes a nonlinear medium that forms a moving grating in the nonlinear medium by introducing at opposite ends of the nonlinear medium a first set of electromagnetic radiation having varying frequencies. Electromagnetic radiation is inputted into the nonlinear medium at a first frequency and extracted at a second frequency from the nonlinear medium. The moving grating in the nonlinear medium allows for electromagnetic radiation to be converted into the second frequency.
    Type: Application
    Filed: April 8, 2004
    Publication date: February 10, 2005
    Inventors: Evan Reed, Marin Soljacic, John Joannopoulos, Steven Johnson, Maksim Skorobogatiy
  • Patent number: 6801698
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: October 5, 2004
    Assignee: OmniGuide Communications
    Inventors: Wesley A. King, Emilia Anderson, Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman
  • Publication number: 20040141702
    Abstract: In general, in one aspect, the invention features a waveguide that includes a first portion extending along a waveguide axis including a first chalcogenide glass, and a second portion extending along the waveguide axis including a second chalcogenide glass, wherein the second chalcogenide glass is different from the first chalcogenide glass.
    Type: Application
    Filed: November 24, 2003
    Publication date: July 22, 2004
    Inventors: Vladimir Fuflyigin, Emilia Anderson, Wesley A. King, Yoel Fink, Steven A. Jacobs, Maksim Skorobogatiy
  • Publication number: 20040070817
    Abstract: Electromagnetic radiation is input into a photonic crystal having a shock wave propagating within, wherein interactions between the shock wave and the incident electromagnetic radiation provide for the modification of frequency and bandwidth associated with input electromagnetic radiation. Modifications in frequency of the electromagnetic radiation are on the order,of the gap size with 100% efficiency in some cases. Additionally, the bandwidth associated with the electromagnetic radiation is increased or decreased by orders of magnitude based on such interactions. High amplitudes are trapped at the shock front for a controllable period of time, allowing for the controlled manipulation of pulses of light. Lastly, the incorporation of deliberately designed crystal defects and non-linear materials results in the conversion of all the energy in the defect band upwards in frequency if the highest group velocity is less than the shock wave speed.
    Type: Application
    Filed: April 11, 2003
    Publication date: April 15, 2004
    Inventors: Evan Reed, Marin Soljacic, John D. Joannopoulos, Steven G. Johnson, Maksim Skorobogatiy
  • Publication number: 20040013379
    Abstract: An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4&lgr; and 80&lgr;, wherein &lgr; is a wavelength corresponding to a central frequency in the first frequency range.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 22, 2004
    Applicant: OmniGuide Communications, a Delaware corporation
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Patent number: 6625364
    Abstract: An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4 &lgr; and 80 &lgr;, wherein &lgr; is a wavelength corresponding to a central frequency in the first frequency range.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: September 23, 2003
    Assignee: OmniGuide Communications
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Publication number: 20030174945
    Abstract: By judicious engineering of grating parameters such as tooth shape, duty cycle and phase offset, the grating strengths and effective indices of the polarization modes of a grated waveguide are adjusted over a wide range of values to achieve a desired level of polarization sensitivity, or insensitivity. In the typical example, the physical geometry of the grating teeth is adjusted so that degenerate behavior (nTE=nTM and &kgr;TE=&kgr;TM) is obtained for two polarization modes; the effective refractive indices and grating strengths are matched for the TE and TM polarization modes. In the current embodiment the sidewall gratings are used in which the tooth profile is selected in order to equalize the grating strength for each polarization mode.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Inventors: Dale G. Fried, Jean-Francois Viens, James S. Foresi, Maksim A. Skorobogatiy, Michael H. Lim
  • Publication number: 20030049003
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: March 13, 2003
    Inventors: Rokan U. Ahmad, Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Lori Pressman, Wesley A. King, Emilia Anderson, John D. Joannopoulos
  • Publication number: 20030044158
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: March 6, 2003
    Inventors: Wesley A. King, Emilia Anderson, Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman
  • Publication number: 20030031443
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: February 13, 2003
    Inventors: Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman, Wesley A. King, Emilia Anderson, John D. Joannopoulos