Patents by Inventor Maksimiljan STIGLIC

Maksimiljan STIGLIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190385036
    Abstract: An integrated circuit, includes: an input configured to receive an induced signal that is modulated according to a protocol belonging to the group including protocols using ASK modulation and protocols using OOK modulation; a detection circuit configured to detect the modulation of the induced signal; a decoding circuit configured to detect the protocol; a configurable limiter configured to limit a level of the induced signal and having a first configuration adapted to protocols using ASK modulation and a second configuration adapted to protocols using OOK modulation; and a control circuit configured to set the limiter in the first configuration until a protocol is detected, and to switch the limiter from the first configuration to the second configuration in response to a protocol using OOK modulation being detected.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 19, 2019
    Inventors: Maksimiljan Stiglic, Iztok Bratuz, Albin Pevec, Roman Benkovic
  • Publication number: 20190296800
    Abstract: An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment.
    Type: Application
    Filed: June 10, 2019
    Publication date: September 26, 2019
    Applicant: STMicroelectronics International N.V.
    Inventors: Kosta KOVACIC, Albin PEVEC, Maksimiljan STIGLIC
  • Patent number: 10361756
    Abstract: An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 23, 2019
    Assignee: STMicroelectronics International N.V.
    Inventors: Kosta Kovacic, Albin Pevec, Maksimiljan Stiglic
  • Patent number: 10326193
    Abstract: In some embodiments, a contactless communication device includes an antenna, and a driving stage having a power supply terminal configured to receive a power supply voltage, where the driving stage is configured to deliver a current to the antenna. The device further includes a monitoring circuit configured to monitor the power transmitted by the antenna. The monitoring circuit is configured, in the presence of a request for a reduction in a current level of transmitted power, to reduce the power supply voltage of the driving stage down to a target value corresponding to a new level of the transmitted power less than the current level.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: June 18, 2019
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics razvoj polprevodnikov d.o.o.
    Inventors: Alexandre Tramoni, Nicolas Cordier, Maksimiljan Stiglic
  • Patent number: 10296822
    Abstract: An RFID transponder device has antenna terminals for coupling an antenna system to the device. A transmitter and a receiver are coupled to the antenna terminals. The device has at least one damping resistance connected to at least one of the antenna terminals. The at least one damping resistance is connected, depending on a voltage swing at the antenna terminals during a transmission burst period, either together with a serially connected switch in parallel to the antenna terminals that are coupled to the receiver, or together with a parallel connected switch between one of the antenna terminals and a terminal of the transmitter. A damping control is configured to activate the at least one damping resistance during a damping period after the transmission burst period by controlling the respective switch.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: May 21, 2019
    Assignee: STMicroelectronics International N.V.
    Inventors: Vinko Kunc, Anton Stern, Kosta Kovacic, Albin Pevec, Maksimiljan Stiglic
  • Patent number: 10242303
    Abstract: In an embodiment, a carrier signal generation circuit can be used for a Radio-frequency identification (RFID) transponder device. A frequency divider circuit has a first input to receive a first frequency signal, a second input to receive a division ratio signal, and an output to provide a carrier signal as a function of the first frequency signal and the division ratio signal. A phase difference circuit has a first input to receive an analog reader device carrier signal, a second input to receive a signal based on the first frequency signal and an output to provide a digital phase difference signal as a function of the reader device carrier signal and the signal based on the first frequency signal. A signal processor has an input coupled to the output of the phase difference circuit.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 26, 2019
    Assignee: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Vinko Kunc, Iztok Bratuz, Albin Pevec, Kosta Kovacic, Maksimiljan Stiglic
  • Publication number: 20190066421
    Abstract: A communication device (10) comprises a conductor (11), a transceiver (12) coupled to the conductor (11) and a data processing unit (13) that is coupled to the transceiver (12). The communication device (10) is configured to determine a strength signal (ST) depending on a receiver signal (SR) received via the conductor (11) and to determine a proximity signal (SP) depending on a proximity of a body to the communication device (10). The data processing unit (13) is configured to generate a disable signal (STO) depending on at least a value of the strength signal (ST) and on at least a value of the proximity signal (SP).
    Type: Application
    Filed: February 17, 2017
    Publication date: February 28, 2019
    Inventors: Elisa GIRANI, Vinko KUNC, Francesco CAVALIERE, Maksimiljan STIGLIC
  • Publication number: 20190044770
    Abstract: A method of wireless communication includes transmitting frames from a transponder to a reader and synchronizing between a reader carrier frequency and an active load modulation (ALM) carrier frequency within each transmitted frame. Each transmitted frame includes ALM carrier bursts generated from subcarrier modulation by binary phase shift keying (BPSK) data encoding and producing signal oscillations at a transponder antenna after each ALM carrier burst generation, The synchronizing occurs at each phase change of the data encoding when no burst is generated during a half period of the subcarrier preceding the phase change and a half period of the subcarrier following this phase change. The transponder antenna has a moderate quality factor sufficient to naturally damp the signal oscillations so that the synchronizing is performed without performing any controlled signal oscillations damping.
    Type: Application
    Filed: October 10, 2018
    Publication date: February 7, 2019
    Inventors: Maksimiljan Stiglic, Kosta Kovacic
  • Patent number: 10198680
    Abstract: A circuit includes an antenna circuit including a number of capacitors and an inductor. The antenna circuit is configured to transmit an output signal upon receiving an input transmit signal. A first control block is configured to transmit an enabling signal upon detecting a presence of a supply voltage at a feeding terminal of the actively transmitting tag in response to the actively transmitting tag being inserted into a host device. A VCO is configured to generate the input transmit signal with the frequency of the interrogator carrier signal upon receiving the enabling signal from the first control block and upon receiving the control voltage from the memory. A second control block is configured to enable a subset of the plurality of capacitors of the antenna circuit upon receiving the enabling signal from the first control block.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: February 5, 2019
    Assignee: STMicroelectronics International N.V.
    Inventors: Vinko Kunc, Maksimiljan Stiglic, Kosta Kovacic
  • Publication number: 20190020467
    Abstract: A transponder communicates with a reader using active load modulation. The transponder includes a digital phase locked loop (DPLL), which, in operation, generates an active load modulation (ALM) carrier clock synchronized to carrier clock of the reader. Between transmission of data frames, the DPLL is placed in a lock mode of operation in which a feedback loop of the DPLL is closed. Within a transmitted data frame having a duration, the DPLL is placed, for the duration of the transmitted data frame, in a hold mode of operation in which the feedback loop is opened. A phase of the ALM carrier clock is adjusted at least once during the duration of the transmitted data frame.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 17, 2019
    Inventors: Maksimiljan STIGLIC, Nejc SUHADOLNIK, Marc HOUDEBINE
  • Publication number: 20180358680
    Abstract: In some embodiments, a contactless communication device includes an antenna, and a driving stage having a power supply terminal configured to receive a power supply voltage, where the driving stage is configured to deliver a current to the antenna. The device further includes a monitoring circuit configured to monitor the power transmitted by the antenna. The monitoring circuit is configured, in the presence of a request for a reduction in a current level of transmitted power, to reduce the power supply voltage of the driving stage down to a target value corresponding to a new level of the transmitted power less than the current level.
    Type: Application
    Filed: April 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexandre Tramoni, Nicolas Cordier, Maksimiljan Stiglic
  • Publication number: 20180343037
    Abstract: A near field communication (NFC) method includes activating an NFC device second device in response to a first electromagnetic field generated by a nearby NFC device. The NFC device generates a second electromagnetic field after being activated. The first NFC device can detect the second electromagnetic field and initiate a near field communication process.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 29, 2018
    Inventors: Alexandre Tramoni, Maksimiljan Stiglic, Kosta Kovacic
  • Patent number: 10128913
    Abstract: A circuit of an actively transmitting tag includes an antenna, a digitizer, a voltage-controlled oscillator (VCO), an output amplifier, a phase-displacement detector, and a regulator. The input of the digitizer connects to the antenna. The outputs of the digitizer and the output amplifier are connected to the input terminals of the phase-displacement detector. The output amplifier connects the output of the VCO to the antenna and the regulator connects the output of the phase-displacement detector to the VCO.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: November 13, 2018
    Assignee: STMicroelectronics International N.V.
    Inventors: Vinko Kunc, Maksimiljan Stiglic, Kosta Kovacic, Albin Pevec, Anton Stern
  • Publication number: 20180324012
    Abstract: A method of wireless communication includes transmitting frames from a transponder to a reader and synchronizing between a reader carrier frequency and an active load modulation (ALM) carrier frequency within each transmitted frame. Each transmitted frame includes ALM carrier bursts generated from subcarrier modulation by binary phase shift keying (BPSK) data encoding and producing signal oscillations at a transponder antenna after each ALM carrier burst generation, The synchronizing occurs at each phase change of the data encoding when no burst is generated during a half period of the subcarrier preceding the phase change and a half period of the subcarrier following this phase change. The transponder antenna has a moderate quality factor sufficient to naturally damp the signal oscillations so that the synchronizing is performed without performing any controlled signal oscillations damping.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 8, 2018
    Inventors: Maksimiljan Stiglic, Kosta Kovacic
  • Patent number: 10122557
    Abstract: A method of wireless communication includes transmitting frames from a transponder to a reader and synchronizing between a reader carrier frequency and an active load modulation (ALM) carrier frequency within each transmitted frame. Each transmitted frame includes ALM carrier bursts generated from subcarrier modulation by binary phase shift keying (BPSK) data encoding and producing signal oscillations at a transponder antenna after each ALM carrier burst generation, The synchronizing occurs at each phase change of the data encoding when no burst is generated during a half period of the subcarrier preceding the phase change and a half period of the subcarrier following this phase change. The transponder antenna has a moderate quality factor sufficient to naturally damp the signal oscillations so that the synchronizing is performed without performing any controlled signal oscillations damping.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 6, 2018
    Assignee: STMICROELECTRONICS RAZVOJ POLPREVODNIKOV D.O.O.
    Inventors: Maksimiljan Stiglic, Kosta Kovacic
  • Patent number: 10049237
    Abstract: Embodiments provide a method for sending a message from an RFID transponder to a reader during a transmission frame using active load modulation, the method comprising. An encoded bit signal has a first logic level during first time segments within the transmission frame and a second logic level during second time segments within the transmission frame. The first time segments include an initial time segment of the transmission frame. A transmission signal is generated based on the encoded bit signal. The transmission signal is generated having a first phase depending on the first logic level during the first time segments, a second phase depending on the second logic level during the second time segments, and the second phase during a time interval preceding the transmission frame.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 14, 2018
    Assignee: STMicroelectronics International N.V.
    Inventors: Kosta Kovacic, Albin Pevec, Maksimiljan Stiglic
  • Publication number: 20180227019
    Abstract: An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment.
    Type: Application
    Filed: July 15, 2016
    Publication date: August 9, 2018
    Applicant: STMicroelectronics International N.V.
    Inventors: Kosta Kovacic, Albin Pevec, Maksimiljan Stiglic
  • Publication number: 20180197059
    Abstract: A circuit includes an antenna circuit including a number of capacitors and an inductor. The antenna circuit is configured to transmit an output signal upon receiving an input transmit signal. A first control block is configured to transmit an enabling signal upon detecting a presence of a supply voltage at a feeding terminal of the actively transmitting tag in response to the actively transmitting tag being inserted into a host device. A VCO is configured to generate the input transmit signal with the frequency of the interrogator carrier signal upon receiving the enabling signal from the first control block and upon receiving the control voltage from the memory. A second control block is configured to enable a subset of the plurality of capacitors of the antenna circuit upon receiving the enabling signal from the first control block.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Vinko Kunc, Maksimiljan Stiglic, Kosta Kovacic
  • Publication number: 20180165569
    Abstract: An RFID transponder device has antenna terminals for coupling an antenna system to the device. A transmitter and a receiver are coupled to the antenna terminals. The device has at least one damping resistance connected to at least one of the antenna terminals. The at least one damping resistance is connected, depending on a voltage swing at the antenna terminals during a transmission burst period, either together with a serially connected switch in parallel to the antenna terminals that are coupled to the receiver, or together with a parallel connected switch between one of the antenna terminals and a terminal of the transmitter. A damping control is configured to activate the at least one damping resistance during a damping period after the transmission burst period by controlling the respective switch.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: Vinko Kunc, Anton Stern, Kosta Kovacic, Albin Pevec, Maksimiljan Stiglic
  • Patent number: 9949108
    Abstract: According to an embodiment, a method can be performed by a first active near-field communication (NFC) device. The method includes assuming a field detection mode, generating an advertisement pulse, and checking whether a predefined condition is fulfilled. If the checking determines that the predefined condition is fulfilled, the method includes assuming an active mode and communicating with an adjacent active NFC device, and, if the checking does not determine that the predefined condition is fulfilled, the method includes staying in the field detection mode and generating another advertisement pulse.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 17, 2018
    Assignee: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Nicolas Cordier, Vinko Kunc, Maksimiljan Stiglic