Patents by Inventor Maksym V. Kovalenko

Maksym V. Kovalenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220127529
    Abstract: An inorganic metal halide compound for one of a light emitting device and an optical member, the compound being represented by Formula 1 and having a double perovskite structure of Formula 1 as defined herein.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 28, 2022
    Inventors: Jaebok Chang, Maksym V. Kovalenko, Viktoriia Morad, Duckjong Suh, Baekhee Lee, Junwoo Lee, Taekjoon Lee
  • Publication number: 20210313522
    Abstract: Provided are an organometallic halide compound represented by Formula 1 and having a zero-dimensional non-perovskite structure, and a light-emitting device, an optical member, and an apparatus, each including the organometallic halide compound. The light-emitting device may include a first electrode, a second electrode facing the first electrode, and an emission layer between the first electrode and the second electrode, where the emission layer includes the organometallic halide compound.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 7, 2021
    Inventors: Jaebok CHANG, Maksym V. KOVALENKO, Viktoriia MORAD, Kawon PAK, Chulsoon PARK, Duckjong SUH, Baekhee LEE, Junwoo LEE, Taekjoon LEE
  • Patent number: 10121952
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: November 6, 2018
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang
  • Patent number: 9966593
    Abstract: A method for the production of SbMx nanoparticles is described that comprises the steps of reducing an antimony salt and optionally an alloying metal with a hydride in an anhydrous polar solvent, separating the solid product formed from the solution, preferably via centrifugation, and washing the product with water. M is an element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, Ga, and 0?x<2.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: May 8, 2018
    Assignee: Belenos Clean Power Holding AG
    Inventors: Maksym V. Kovalenko, Marc Walter
  • Patent number: 9923202
    Abstract: An antimony based anode material for a rechargeable battery includes nanoparticles of composition SbMxOy, where M is an element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, and Ga, with 0?x<2 and 0?y?2.5+2x. The nanoparticles form a substantially monodisperse ensemble with an average size not exceeding a value of 30 nm and by a size deviation not exceeding 15%. A method for preparing the antimony based anode material is carried out in situ in a non-aqueous solvent and starts by reacting an antimony salt and an organometallic amide reactant and oleylamine.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: March 20, 2018
    Assignee: Belenos Clean Power Holding AG
    Inventors: Maksym V. Kovalenko, He Meng, Kostiantyn Kravchyk, Marc Walter
  • Publication number: 20170155140
    Abstract: An antimony based anode material for a rechargeable battery includes nanoparticles of composition SbMxOy, where M is an element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, and Ga, with 0?x<2 and 0?y?2.5+2x. The nanoparticles form a substantially monodisperse ensemble with an average size not exceeding a value of 30 nm and by a size deviation not exceeding 15%. A method for preparing the antimony based anode material is carried out in situ in a non-aqueous solvent and starts by reacting an antimony salt and an organometallic amide reactant and oleylamine.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 1, 2017
    Applicant: Belenos Clean Power Holding AG
    Inventors: Maksym V. KOVALENKO, He MENG, Kostiantyn KRAVCHYK, Marc WALTER
  • Patent number: 9634326
    Abstract: An antimony based anode material for a rechargeable battery comprises nanoparticles of composition SbMxOy where M is a further element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, Ga, with 0?x<2 and 0?y?2.5+2x. The nanoparticles form a substantially monodisperse ensemble with an average size not exceeding a value of 30 nm and by a size deviation not exceeding 15%. A method for preparing the antimony based anode material is carried out in situ in a non-aqueous solvent and starts by reacting an antimony salt and an organometallic amide reactant and oleylamine.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 25, 2017
    Assignee: Belenos Clean Power Holding AG
    Inventors: Maksym V. Kovalenko, He Meng, Kostiantyn Kravchyk, Marc Walter
  • Publication number: 20160308107
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 20, 2016
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang
  • Patent number: 9346998
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 24, 2016
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang
  • Publication number: 20150372287
    Abstract: A method for the production of SbMx nanoparticles is described that comprises the steps of reducing an antimony salt and optionally an alloying metal with a hydride in an anhydrous polar solvent, separating the solid product formed from the solution, preferably via centrifugation, and washing the product with water. M is an element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, Ga, and 0?x<2.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 24, 2015
    Inventors: Maksym V. Kovalenko, Marc Walter
  • Publication number: 20150147650
    Abstract: An antimony based anode material for a rechargeable battery comprises nanoparticles of composition SbMxOy where M is a further element selected from the group consisting of Sn, Ni, Cu, In, Al, Ge, Pb, Bi, Fe, Co, Ga, with 0?x<2 and 0?y?2.5+2x. The nanoparticles form a substantially monodisperse ensemble with an average size not exceeding a value of 30 nm and by a size deviation not exceeding 15%. A method for preparing the antimony based anode material is carried out in situ in a non-aqueous solvent and starts by reacting an antimony salt and an organometallic amide reactant and oleylamine.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Maksym V. KOVALENKO, He MENG, Kostiantyn KRAVCHYK, Marc WALTER
  • Publication number: 20120104325
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Application
    Filed: April 23, 2010
    Publication date: May 3, 2012
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang