Patents by Inventor Malcolm Scott Carroll

Malcolm Scott Carroll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240185106
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to determining estimated energy relaxation times of qubits. A system can comprise a memory configured to store computer executable components; and a processor configured to execute the computer executable components stored in the memory, wherein the computer executable components comprise a sampling component configured to sample a plurality of measurements of an energy relaxation time of a qubit at individual shifted qubit frequencies of a plurality of shifted qubit frequencies of the qubit; and an analysis component configured to perform an analysis, based on a protocol, to determine a correlation frequency-length between individual energy relaxation times measured at the individual shifted qubit frequencies.
    Type: Application
    Filed: September 28, 2022
    Publication date: June 6, 2024
    Inventors: Malcolm Scott Carroll, Sami Rosenblatt, Abhinav Kandala
  • Publication number: 20230289642
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to analysis of qubit coherence parameters of a physical qubit layout of a quantum computer. A system can comprise a pulse component for transmitting signals to a qubit, a readout component for receiving signals form the qubit, a memory that stores computer executable component, and a processor that executes the computer executable components stored in the memory. The computer executable components are executable to cause the pulse component to generate a first pulse to drive the qubit, cause the pulse component to generate a second pulse comprising an Autler-Townes off-resonant tone, and determine a probability relative to the qubit, in view of a shift of the qubit to a shifted frequency caused by the second pulse.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Malcolm Scott Carroll, Sami Rosenblatt, Abhinav Kandala
  • Publication number: 20230289400
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to determining estimated true relaxation times of qubits absent measurement of entire T1 decay times of the qubits. A system can comprise a memory that stores computer executable components; and a processor that executes the computer executable components stored in the memory, wherein the computer executable components are executable to cause, by the processor, one or more energy relaxation measurements, using a pulse generation, at the qubit frequency for a qubit and at a plurality of shifted frequencies for the qubit, and to determine, by the processor, a true average relaxation time of the qubit based on the plurality of energy relaxation measurements.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 14, 2023
    Inventors: Malcolm Scott Carroll, Sami Rosenblatt, Abhinav Kandala