Patents by Inventor Malgorzata Iwona Rubinsztajn

Malgorzata Iwona Rubinsztajn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9956520
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Robert James Perry, Grigorii Lev Soloveichik, Malgorzata Iwona Rubinsztajn, Michael Joseph O'Brien, Larry Neil Lewis, Tunchiao Hubert Lam, Sergei Kniajanski, Dan Hancu
  • Publication number: 20160375400
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Robert James Perry, Grigorii Lev Soloveichik, Malgorzata Iwona Rubinsztajn, Michael Joseph O'Brien, Larry Neil Lewis, Tunchiao Hubert Lam, Sergei Kniajanski, Dan Hancu
  • Patent number: 9440182
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 13, 2016
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Robert James Perry, Tunchiao Hubert Lam, Grigorii Lev Soloveichik, Sergei Kniajanski, Larry Neil Lewis, Malgorzata Iwona Rubinsztajn, Dan Hancu
  • Patent number: 8435673
    Abstract: A cathode composition and a rechargeable electrochemical cell comprising same are disclosed. The cathode composition is described as comprising particles of one or more transition metal, alkali halometallate having a melting point of less than about 300 degrees Celsius, and at least one phosphorus composition additive selected from P—O compositions, P-halogen compositions, P—O-halogen compositions, and their reaction products and combinations. Also described is a rechargeable electrochemical cell comprising the composition. The phosphorus composition additive in the cathode composition of a cell is effective to lower the capacity degradation rate of the cell during operation relative to absence of the additive, and effective to lower the internal resistance of the cell when under operating conditions relative to absence of the additive.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 7, 2013
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, Jun Cui, Malgorzata Iwona Rubinsztajn, Richard Louis Hart, Jennifer Kathleen Redline
  • Publication number: 20120171095
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Application
    Filed: December 21, 2011
    Publication date: July 5, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Joseph O'Brien, Robert James Perry, Tunchiao Hubert Lam, Grigorii Lev Soloveichik, Sergei Kniajanski, Larry Neil Lewis, Malgorzata Iwona Rubinsztajn, Dan Hancu
  • Patent number: 8030509
    Abstract: In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 4, 2011
    Assignee: General Electric Company
    Inventors: Robert James Perry, Larry Neil Lewis, Michael Joseph O'Brien, Grigorii Lev Soloveichik, Sergei Kniajanski, Tunchiao Hubert Lam, Julia Lam Lee, Malgorzata Iwona Rubinsztajn
  • Publication number: 20100279165
    Abstract: A cathode composition and a rechargeable electrochemical cell comprising same are disclosed. The cathode composition is described as comprising particles of one or more transition metal, alkali halometallate having a melting point of less than about 300 degrees Celsius, and at least one phosphorus composition additive selected from P-O compositions, P-halogen compositions, P-O-halogen compositions, and their reaction products and combinations. Also described is a rechargeable electrochemical cell comprising the composition. The phosphorus composition additive in the cathode composition of a cell is effective to lower the capacity degradation rate of the cell during operation relative to absence of the additive, and effective to lower the internal resistance of the cell when under operating conditions relative to absence of the additive.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: General Electric Company
    Inventors: John Patrick LEMMON, Jun Cui, Malgorzata Iwona Rubinsztajn, Richard Louis Hart, Jennifer Kathleen Redline
  • Publication number: 20100158777
    Abstract: In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 24, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert James Perry, Larry Neil Lewis, Michael Joseph O'Brien, Grigorii Lev Soloveichik, Sergei Kniajanski, Tunchiao Hubert Lam, Julia Lam Lee, Malgorzata Iwona Rubinsztajn
  • Publication number: 20100154639
    Abstract: A carbon dioxide absorbent comprising (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2 is provided and (ii) a hydroxy-containing solvent. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 24, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert James Perry, Michael Joseph O'Brien, Tunchiao Hubert Lam, Grigorii Lev Soloveichik, Sergei Kniajanski, Larry Neil Lewis, Malgorzata Iwona Rubinsztajn, Dan Hancu
  • Publication number: 20080261098
    Abstract: A method for making a proton-conducting membrane is described. The method includes the steps of combining a protonated, layered inorganic material with a proton-conducting organic polymer in a liquid medium; exfoliating the layered inorganic material, so that individual layers of the inorganic material are suspended in the liquid medium and spaced from each other; and the polymer is absorbed onto the surface of the individual layers. In this manner, a polymer-inorganic composite is formed. The liquid can then be removed, to recover the resulting membrane. Related electrolysis and fuel cell devices are also described, which incorporate the proton-conducting membrane.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Patrick Lemmon, Malgorzata Iwona Rubinsztajn, Richard Louis Hart
  • Patent number: 7144763
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one silicone epoxy resin, (B) at least one hydroxyl-containing compound, (C) at least one anhydride curing agent, (D) at least one ancillary curing catalyst, and optionally at least one of thermal stabilizers, UV stabilizers, cure modifiers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: December 5, 2006
    Assignee: General Electric Company
    Inventors: Malgorzata Iwona Rubinsztajn, Slawomir Rubinsztajn
  • Patent number: 6916889
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one silicone epoxy resin, (B) at least one hydroxyl-containing compound, (C) at least one anhydride curing agent, (D) at least one ancillary curing catalyst, and optionally at least one of thermal stabilizers, UV stabilizers, cure modifiers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: July 12, 2005
    Assignee: General Electric Company
    Inventors: Malgorzata Iwona Rubinsztajn, Slawomir Rubinsztajn
  • Patent number: 6878783
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) at least one anhydride curing agent, (C) at least one a boron containing catalyst that is essentially free of halogen, (D) at least one cure modifier, and, optionally (E) at least one ancillary curing catalyst. The encapsulant may also optionally comprise at least one of thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip, and an encapsulant comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: April 12, 2005
    Assignee: General Electric Company
    Inventors: Gary William Yeager, Malgorzata Iwona Rubinsztajn
  • Patent number: 6809162
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) a curing agent comprising hexahydro-4-methylphthalic anhydride, (C) at least one a boron containing catalyst that is essentially free of halogen, and (D) at least one cure modifier. The encapsulant (11) may also optionally comprise at least one of ancillary curing catalysts, thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: October 26, 2004
    Assignee: General Electric Company
    Inventor: Malgorzata Iwona Rubinsztajn
  • Publication number: 20030212230
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one silicone epoxy resin, (B) at least one hydroxyl-containing compound, (C) at least one anhydride curing agent, (D) at least one ancillary curing catalyst, and optionally at least one of thermal stabilizers, UV stabilizers, cure modifiers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Application
    Filed: May 1, 2003
    Publication date: November 13, 2003
    Inventors: Malgorzata Iwona Rubinsztajn, Slawomir Rubinsztajn
  • Publication number: 20030208008
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) a curing agent comprising hexahydro-4-methylphthalic anhydride, (C) at least one a boron containing catalyst that is essentially free of halogen, and (D) at least one cure modifier. The encapsulant (11) may also optionally comprise at least one of ancillary curing catalysts, thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Application
    Filed: April 29, 2003
    Publication date: November 6, 2003
    Inventor: Malgorzata Iwona Rubinsztajn
  • Publication number: 20030208009
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) at least one anhydride curing agent, (C) at least one a boron containing catalyst that is essentially free of halogen, (D) at least one cure modifier, and, optionally (E) at least one ancillary curing catalyst. The encapsulant may also optionally comprise at least one of thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip, and an encapsulant comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Application
    Filed: April 29, 2003
    Publication date: November 6, 2003
    Inventors: Gary William Yeager, Malgorzata Iwona Rubinsztajn
  • Patent number: 6632892
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one silicone epoxy resin, (B) at least one hydroxyl-containing compound, (C) at least one anhydride curing agent, (D) at least one ancillary curing catalyst, and optionally at least one of thermal stabilizers, UV stabilizers, cure modifiers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip (4), and an encapsulant (11) comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: October 14, 2003
    Assignee: General Electric Company
    Inventors: Malgorzata Iwona Rubinsztajn, Slawomir Rubinsztajn
  • Patent number: 6617401
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) a curing agent comprising hexahydro-4-methylphthalic anhydride, (C) at least one a boron containing catalyst that is essentially free of halogen, and (D) at least one cure modifier. The encapsulant may also optionally comprise at least one of ancillary curing catalysts, thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip, and an encapsulant comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventor: Malgorzata Iwona Rubinsztajn
  • Patent number: 6617400
    Abstract: Epoxy resin compositions are disclosed which comprise (A) at least one cycloaliphatic epoxy resin, (B) at least one anhydride curing agent, (C) at least one a boron containing catalyst that is essentially free of halogen, (D) at least one cure modifier, and, optionally (E) at least one ancillary curing catalyst. The encapsulant may also optionally comprise at least one of thermal stabilizers, UV stabilizers, coupling agents, or refractive index modifiers. Also disclosed are packaged solid state devices comprising a package, a chip, and an encapsulant comprising an epoxy resin composition of the invention. A method of encapsulating a solid state device is also provided.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Gary William Yeager, Malgorzata Iwona Rubinsztajn