Patents by Inventor Malte TIBURCY

Malte TIBURCY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076620
    Abstract: The application describes methods for producing artificial skeletal muscle tissue from pluripotent stem cells. A method for producing skeletal myoblasts, skeletal myotubes and satellite cells from pluripotent stem cells is also disclosed. During the described methods, there is directed differentiation and maturation of the pluripotent stem cells into skeletal myotubes and satellite cells. The application also describes artificial skeletal muscle tissue which has multinuclear skeletal muscle fibres with satellite cells. Furthermore, the invention relates to mesodermally differentiated skeletal myoblast precursor cells, myogenically specified skeletal myoblast precursor cells, skeletal myoblast cells, satellite cells and skeletal myotubes, which can be produced by means of the disclosed methods. The application also describes the use of skeletal muscle tissue or the disclosed cells in drug testing or in medicine.
    Type: Application
    Filed: October 13, 2020
    Publication date: March 7, 2024
    Applicant: Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin
    Inventors: Wolfram-Hubertus ZIMMERMANN, Malte TIBURCY, Mina SHAHRIYARI
  • Publication number: 20230390460
    Abstract: A method for manufacturing a multilayer engineered heart muscle that includes (i) providing a liquid reconstitution mixture in a mould and (ii) culturing the mixture. The method includes a sequential addition of one or more further liquid reconstitution mixtures to obtain a multilayer engineered heart muscle. The muscle ideally has the form of a patch, a pouch, or a cylinder. Furthermore, a multilayer engineered heart muscle having collagen, cardiac myocytes and non-myocytes originating from at least 2 layers is disclosed. The multilayer engineered heart muscle forms the basis for several in vitro and in vivo applications such as the production of a multilayer engineered heart muscle for use in a patient, for example for use in heart repair.
    Type: Application
    Filed: October 21, 2021
    Publication date: December 7, 2023
    Applicant: Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin
    Inventors: Wolfram-Hubertus ZIMMERMANN, Malte TIBURCY, Tim MEYER
  • Publication number: 20230279357
    Abstract: The application describes a method for producing a population of cardiac stromal cells from pluripotent stem cells. Specifically, the method relates to (i) inducing epithelial-mesenchymal transition of pluripotent stem cell derived epicardial cells and (ii) amplifying the number of cardiac stromal cells in serum-free conditions. These cardiac stromal cells can be mass produced according to the described method and said cells maintain the expression of CD90, CD73 and CD44 in at least 80% of the cardiac stromal cells. Furthermore, the application relates to a population of cardiac stromal cells, which are pluripotent stem cells derived and wherein at least 80% of the cardiac stromal cells express CD90, CD73 and CD44. Said cardiac stromal form the basis for several in vitro and in vivo applications such as the production of engineered organ tissue and the support of, for example, heart repair. Also, a serum- free culture medium for the amplification of cardiac stromal cells is provided herein.
    Type: Application
    Filed: July 28, 2021
    Publication date: September 7, 2023
    Applicant: Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin
    Inventors: Wolfram-Hubertus ZIMMERMANN, Malte TIBURCY
  • Patent number: 11643626
    Abstract: A well plate comprises a plate main body and at least one cavity in an upper side of the plate main body. An upwardly open annular channel is formed in the at least one cavity, the annular channel being delimited at an inner circumference thereof by a closed circumferential wall. A horizontal outer circumference of the circumferential wall decreases from bottom to top up to an upper edge of the circumferential wall. Within the horizontal circumference of the circumferential wall, at its upper edge, at least two retaining elements connect upwardly to the upper edge of the circumferential wall. The at least two retaining elements are at a free horizontal distance to one another, and at least one of the at least two retaining elements is elastically supported at the plate main body in horizontal direction.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 9, 2023
    Assignee: GEORG-AUGUST-UNIVERSITAET GOETTINGEN STIFTUNG OEFFENTLICHEN RECHTS, UNIVERSITAETSMEDIZIN
    Inventors: Tim Meyer, Wolfram-Hubertus Zimmermann, Malte Tiburcy
  • Patent number: 11492594
    Abstract: The present invention provides a new method for producing Engineered Heart Muscle (EHM) under chemically fully defined conditions all compatible with GMP regulations. The resulting human myocardium generates force and shows typical heart muscle properties.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: November 8, 2022
    Assignee: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus Zimmermann, Malte Tiburcy, James Hudson
  • Publication number: 20200231934
    Abstract: The present invention provides a new method for producing Engineered Heart Muscle (EHM) under chemically fully defined conditions all compatible with GMP regulations. The resulting human myocardium generates force and shows typical heart muscle properties.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 23, 2020
    Applicant: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus ZIMMERMANN, Malte TIBURCY, James HUDSON
  • Patent number: 10626374
    Abstract: The present invention provides a new method for producing Engineered Heart Muscle (EHM) under chemically fully defined conditions and compounds all compatible with GMP regulations. The resulting human myocardium generates force and shows typical heart muscle properties.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: April 21, 2020
    Assignee: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus Zimmermann, Malte Tiburcy, James Hudson
  • Publication number: 20190300858
    Abstract: The present invention is directed to a method for producing bioengineered heart muscle (BHM) from pluripotent stem cells, generally comprising the steps of inducing mesoderm differentiation, cardiac differentiation, and cardiac maturation by directed tissue formation. The method is a robust, serum-free and reproducible way to produce BHM for multiple applications, and is applicable to multiple pluripotent stem cell lines. The present invention is also directed to the BHM produced by the method disclosed herein, as well as to uses of said BHM in pharmacologic and toxicity screenings, and its use in medicine.
    Type: Application
    Filed: May 20, 2019
    Publication date: October 3, 2019
    Applicant: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus ZIMMERMANN, James HUDSON, Malte TIBURCY
  • Patent number: 10329532
    Abstract: The present invention is directed to a method for producing bioengineered heart muscle (BHM) from pluripotent stem cells, generally comprising the steps of inducing mesoderm differentiation, cardiac differentiation, and cardiac maturation by directed tissue formation. The method is a robust, serum-free and reproducible way to produce BHM for multiple applications, and is applicable to multiple pluripotent stem cell lines. The present invention is also directed to the BHM produced by the method disclosed herein, as well as to uses of said BHM in pharmacologic and toxicity screenings, and its use in medicine.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 25, 2019
    Assignee: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus Zimmermann, James Hudson, Malte Tiburcy
  • Publication number: 20190106663
    Abstract: A well plate comprises a plate main body and at least one cavity in an upper side of the plate main body. An upwardly open annular channel is formed in the at least one cavity, the annular channel being delimited at an inner circumference thereof by a closed circumferential wall. A horizontal outer circumference of the circumferential wall decreases from bottom to top up to an upper edge of the circumferential wall. Within the horizontal circumference of the circumferential wall, at its upper edge, at least two retaining elements connect upwardly to the upper edge of the circumferential wall. The at least two retaining elements are at a free horizontal distance to one another, and at least one of the at least two retaining elements is elastically supported at the plate main body in horizontal direction.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 11, 2019
    Inventors: Tim Meyer, Wolfram-Hubertus Zimmermann, Malte Tiburcy
  • Publication number: 20190010460
    Abstract: The present invention is directed to a method for producing bioengineered heart muscle (BHM) from pluripotent stem cells, generally comprising the steps of inducing mesoderm differentiation, cardiac differentiation, and cardiac maturation by directed tissue formation. The method is a robust, serum-free and reproducible way to produce BHM for multiple applications, and closed herein, as well as to uses of said BHM in pharmacologic and toxicity screenings, and its use in medicine.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 10, 2019
    Applicant: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFFENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus ZIMMERMANN, James HUDSON, Malte TIBURCY
  • Publication number: 20160215264
    Abstract: The present invention is directed to a method for producing bioengineered heart muscle (BHM) from pluripotent stem cells, generally comprising the steps of inducing mesoderm differentiation, cardiac differentiation, and cardiac maturation by directed tissue formation. The method is a robust, serum-free and reproducible way to produce BHM for multiple applications, and is applicable to multiple pluripotent stem cell lines. The present invention is also directed to the BHM produced by the method disclosed herein, as well as to uses of said BHM in pharmacologic and toxicity screenings, and its use in medicine.
    Type: Application
    Filed: September 19, 2014
    Publication date: July 28, 2016
    Applicant: GEORG-AUGUST-UNIVERSITÄT GTÖTINGEN STIFTUNG ÖFF ENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus ZIMMERMANN, James HUDSON, Malte TIBURCY
  • Publication number: 20160201034
    Abstract: The present invention provides a new method for producing Engineered Heart Muscle (EHM) under chemically fully defined conditions and compounds all compatible with GMP regulations. The resulting human myocardium generates force and shows typical heart muscle properties.
    Type: Application
    Filed: August 22, 2014
    Publication date: July 14, 2016
    Applicant: GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN STIFTUNG ÖFF ENTLICHEN RECHTS, UNIVERSITÄTSMEDIZIN
    Inventors: Wolfram-Hubertus ZIMMERMANN, Malte TIBURCY, James HUDSON