Patents by Inventor Mamoru Nakashima

Mamoru Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710855
    Abstract: An all-solid-state battery is provided that includes a cathode layer, an anode layer, and a solid electrolyte layer, in which a porosity of the solid electrolyte layer is equal to or less than 10%. Moreover, the batter includes a surface roughness Rz1 of the cathode layer and a surface roughness Rz2 of the anode layer, such that Rz1+Rz2?25.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: July 25, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Mamoru Nakashima, Masayuki Arimochi, Masamitsu Suzuki, Masahiro Morooka, Noriyuki Aoki, Keiko Hayashi
  • Publication number: 20230052507
    Abstract: A solid-state battery that includes one or more battery constituent units each including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, in which the positive electrode layer and the negative electrode layer have a central portion and an outer edge portion surrounding the central portion in a plan view of the solid-state battery, and in at least one of the positive electrode layer and the negative electrode layer: 1.05?(maximum value of film thickness of outer edge portion)/(average film thickness of central portion)<1.34 and (average film thickness of solid electrolyte layer)/(average film thickness of central portion)>0.35.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 16, 2023
    Inventor: Mamoru NAKASHIMA
  • Publication number: 20200350524
    Abstract: A battery that includes a battery element, an exterior material covering a surface of the battery element, and an intermediate layer between the battery element and the exterior material and including a solid electrolyte, in which a thickness of the intermediate layer is substantially uniform.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Inventors: Mamoru Nakashima, Koichi Nakano
  • Publication number: 20200014071
    Abstract: An all-solid-state battery is provided that includes a cathode layer, an anode layer, and a solid electrolyte layer, in which a porosity of the solid electrolyte layer is equal to or less than 10%. Moreover, the batter includes a surface roughness Rz1 of the cathode layer and a surface roughness Rz2 of the anode layer, such that Rz1+Rz2?25.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Inventors: Mamoru NAKASHIMA, Masayuki ARIMOCHI, Masamitsu SUZUKI, Masahiro MOROOKA, Noriyuki AOKI, Keiko HAYASHI
  • Patent number: 10364160
    Abstract: A method for producing a potassium titanate easily produces a potassium titanate having a high single phase ratio and a significantly reduced fibrous potassium titanate content in high yield. The method for producing a potassium titanate includes: a mixing step that mixes a titanium raw material with a potassium raw material, the titanium raw material including 0 to 60 mass % of titanium oxide having a specific surface area of 1 to 2 m2/g, 40 to 100 mass % of titanium oxide having a specific surface area of 7 to 200 m2/g, and 0 to 4.5 mass % in total of one or more materials selected from titanium metal and titanium hydride, and the potassium raw material including a potassium compound; a calcination step that calcines a raw material mixture obtained by the mixing step at a calcination temperature of 950 to 990° C.; and a grinding step that grinds a calcined powder obtained by the calcination step using one or more means selected from a vibrating mill and an impact pulverizer.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: July 30, 2019
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Mamoru Nakashima, Hideki Sakai, Daisuke Taki
  • Patent number: 10156277
    Abstract: Provided is an alkali-metal titanate in which the content and adhesivity of the fibrous potassium titanate is significantly reduced. The alkali-metal titanate includes 0.5 mol to 2.2 mol of potassium oxide in terms of potassium atoms, 0.05 mol to 1.4 mol of sodium oxide in terms of sodium atoms, and 0 mol to 1.4 mol of lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate, in which a total content of potassium oxide in terms of potassium atoms, sodium oxide in terms of sodium atoms, and lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate is 1.8 mol to 2.3 mol; and the alkali-metal titanate has a single phase conversion ratio of 85% to 100%, a fiber ratio of 0% by volume to 10% by volume, and a moisture content of 0% by mass to 1.0% by mass.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: December 18, 2018
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Mamoru Nakashima, Hideki Sakai, Daisuke Taki
  • Publication number: 20180163805
    Abstract: Provided is an alkali-metal titanate in which the content and adhesivity of the fibrous potassium titanate is significantly reduced. The alkali-metal titanate includes 0.5 mol to 2.2 mol of potassium oxide in terms of potassium atoms, 0.05 mol to 1.4 mol of sodium oxide in terms of sodium atoms, and 0 mol to 1.4 mol of lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate, in which a total content of potassium oxide in terms of potassium atoms, sodium oxide in terms of sodium atoms, and lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate is 1.8 mol to 2.3 mol; and the alkali-metal titanate has a single phase conversion ratio of 85% to 100%, a fiber ratio of 0% by volume to 10% by volume, and a moisture content of 0% by mass to 1.0% by mass.
    Type: Application
    Filed: April 28, 2016
    Publication date: June 14, 2018
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Mamoru Nakashima, Hideki Sakai, Daisuke Taki
  • Patent number: 9711822
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1?a)LaxLi2-3xTiO3-aSrTiO3, (1?a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 ?m or more.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 18, 2017
    Assignees: TOHO TITANIUM CO., LTD., NAKASHIMA SANGYO CO., LTD., THE GAKUSHUIN SCHOOL CORPORATION
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima
  • Patent number: 9698430
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1-a)LaxLi2-3xTiO3-aSrTiO3, (1-a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, and Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Al, Fe and Ga), and concentration of S is 1500 ppm or less. The material is obtained by sintering raw material powder mixture having S content amount of 2000 ppm or less in the entirety of raw material powders for mixture, that is, titanium raw material, lithium raw material, and lanthanum raw material.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: July 4, 2017
    Assignees: TOHO TITANIUM CO., LTD., NAKASHIMA SANGYO CO., LTD., THE GAKUSHUIN SCHOOL CORPORATION
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima
  • Publication number: 20170044023
    Abstract: A method for producing a potassium titanate easily produces a potassium titanate having a high single phase ratio and a significantly reduced fibrous potassium titanate content in high yield. The method for producing a potassium titanate includes: a mixing step that mixes a titanium raw material with a potassium raw material, the titanium raw material including 0 to 60 mass % of titanium oxide having a specific surface area of 1 to 2 m2/g, 40 to 100 mass % of titanium oxide having a specific surface area of 7 to 200 m2/g, and 0 to 4.5 mass % in total of one or more materials selected from titanium metal and titanium hydride, and the potassium raw material including a potassium compound; a calcination step that calcines a raw material mixture obtained by the mixing step at a calcination temperature of 950 to 990° C.; and a grinding step that grinds a calcined powder obtained by the calcination step using one or more means selected from a vibrating mill and an impact pulverizer.
    Type: Application
    Filed: March 11, 2015
    Publication date: February 16, 2017
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Mamoru Nakashima, Hideki Sakai, Daisuke Taki
  • Publication number: 20150180050
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1?a)LaxLi2-3xTiO3-aSrTiO3, (1?a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, and Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Al, Fe and Ga), and concentration of S is 1500 ppm or less. The material is obtained by sintering raw material powder mixture having S content amount of 2000 ppm or less in the entirety of raw material powders for mixture, that is, titanium raw material, lithium raw material, and lanthanum raw material.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 25, 2015
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima
  • Publication number: 20150099197
    Abstract: A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10?4 Scm?1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1?a)LaxLi2-3xTiO3-aSrTiO3, (1?a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55?x?0.59, 0?a?0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 ?m or more.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 9, 2015
    Applicants: Toho Titanium Co., Ltd., NAKASHIMA SANGYO CO., LTD., THE GAKUSHUIN SCHOOL CORPORATION
    Inventors: Mamoru Nakashima, Yoshiyuki Inaguma, Mikio Nakashima