Patents by Inventor Mamoru Shimizu
Mamoru Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250036027Abstract: A composition for forming a resist underlayer film, the composition including: a polymer containing a unit structure (A) represented by the following formula (1); and a solvent: wherein, in the formula (1), R1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; and L1 represents a monovalent organic group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a monovalent heterocyclic group, where at least one hydrogen atom which the alkyl group, the aryl group, and the monovalent heterocyclic group have is substituted with a halogen atom, and where at least one hydrogen atom which the alkyl group, the aryl group, and the monovalent heterocyclic group have may be substituted with a hydroxy group.Type: ApplicationFiled: August 17, 2022Publication date: January 30, 2025Applicant: NISSAN CHEMICAL CORPORATIONInventors: Kosuke IGATA, Shou SHIMIZU, Mamoru TAMURA
-
Publication number: 20240174710Abstract: The present disclosure, among other things, provides technologies for synthesis, including reagents and methods for stereoselective synthesis. In some embodiments, the present disclosure provides compounds useful as chiral auxiliaries. In some embodiments, the present disclosure provides reagents and methods for oligonucleotide synthesis. In some embodiments, the present disclosure provides reagents and methods for chirally controlled preparation of oligonucleotides. In some embodiments, technologies of the present disclosure are particularly useful for constructing challenging internucleotidic linkages, providing high yields and stereoselectivity.Type: ApplicationFiled: May 12, 2023Publication date: May 30, 2024Inventors: David Charles Donnell Butler, Christopher P. Hencken, Naoki Iwamoto, Pachamuthu Kandasamy, Alvaro Andres Lanao, Genliang Lu, Mamoru Shimizu, Sethumadhavan Divakaramenon, Chandra Vargeese, Gopal Reddy Bommineni, Subramanian Marappan
-
Publication number: 20240026358Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.Type: ApplicationFiled: March 11, 2022Publication date: January 25, 2024Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
-
Publication number: 20230392137Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.Type: ApplicationFiled: September 26, 2022Publication date: December 7, 2023Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
-
Publication number: 20230348524Abstract: Among other things, the present disclosure provides technologies for oligonucleotide preparation, particularly chirally controlled oligonucleotide preparation, which technologies provide greatly improved crude purity and yield, and significantly reduce manufacturing costs.Type: ApplicationFiled: March 17, 2023Publication date: November 2, 2023Inventors: Keith Andrew Bowman, Chandra Vargeese, David Charles Donnell Butler, Pachamuthu Kandasamy, Mohammed Rowshon Alam, Mamoru Shimizu, Stephany Michelle Standley, Vincent Aduda, Gopal Reddy Bommineni, Snehlata Tripathi, Ilia Korboukh
-
Publication number: 20230329201Abstract: Among other things, the present disclosure provides cells and non-human animals engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, the present disclosure provides cells and non-human animals engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, non-human animals are genetically modified rodents such as mice, rat, etc. In some embodiments, non-human animals are mice. In some embodiments, the present disclosure provides technologies for assessing an agent comprising administering the agent to a cell or non-human animal engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, such a cell or non-human animal is engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, an agent is a pharmaceutical agent. In some embodiments, an agent is or comprises an oligonucleotide.Type: ApplicationFiled: August 23, 2021Publication date: October 19, 2023Inventors: Hailin Yang, Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Jack David Godfrey, Naoki Iwanmoto
-
Publication number: 20230295619Abstract: Among other things, the present disclosure provides oligonucleotides, compositions, and methods for preventing and/ or treating various conditions, disorders or diseases. In some embodiments, provided technologies comprise nucleobase modifications, sugar modifications, intemucleotidic linkage modifications and/or patterns thereof, and have improved properties, activities and/or selectivities. In some embodiments, provided technologies target MAPT. In some embodiments, the present disclosure provides MAPT oligonucleotides, compositions and methods for preventing and/or treating MAPT-associated conditions, disorders or diseases, such as Alzheimer’s Disease (AD) or Frontotemporal Dementia (FTD).Type: ApplicationFiled: February 26, 2021Publication date: September 21, 2023Inventors: Abbie Madeline Maguire, Priyanka Shiva Prakasha, Naoki Iwamoto, Kenneth Allan Longo, Chandra Vargeese, Kevin Kim, Elena Dale, Pachamuthu Kandasamy, Mamoru Shimizu
-
Patent number: 11718638Abstract: The present disclosure, among other things, provides technologies for synthesis, including reagents and methods for stereoselective synthesis. In some embodiments, the present disclosure provides compounds useful as chiral auxiliaries. In some embodiments, the present disclosure provides reagents and methods for oligonucleotide synthesis. In some embodiments, the present disclosure provides reagents and methods for chirally controlled preparation of oligonucleotides. In some embodiments, technologies of the present disclosure are particularly useful for constructing challenging internucleotidic linkages, providing high yields and stereoselectivity.Type: GrantFiled: June 21, 2018Date of Patent: August 8, 2023Assignee: WAVE LIFE SCIENCES LTD.Inventors: David Charles Donnell Butler, Christopher P. Hencken, Naoki Iwamoto, Pachamuthu Kandasamy, Alvaro Andres Lanao, Genliang Lu, Mamoru Shimizu, Sethumadhavan Divakaramenon, Chandra Vargeese, Gopal Reddy Bommineni, Subramanian Marappan
-
Publication number: 20230220384Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.Type: ApplicationFiled: October 6, 2020Publication date: July 13, 2023Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto
-
Publication number: 20230203087Abstract: The present disclosure provides modified oligonucleotides and compositions and methods thereof. In some embodiments, provided technologies comprise modified sugars and/or modified internucleotidic linkages. In some embodiments, the present disclosure provides technologies for preparing modified oligonucleotides. In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions and methods for their preparation and uses.Type: ApplicationFiled: May 24, 2021Publication date: June 29, 2023Inventors: Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Chandra Vargeese, Subramanian Marappan, Gopal Reddy Bommineni, Mamoru Shimizu, Naoki Iwamoto, Stephany Michelle Standley, Yuanjing Liu, Amy Jada Andreucci, Genliang Lu, Onanong Chivatakarn, Akbar Husain Khan
-
Publication number: 20230089442Abstract: Among other things, the present disclosure provides technologies for oligonucleotide preparation, particularly chirally controlled oligonucleotide preparation, which technologies provide greatly improved crude purity and yield, and significantly reduce manufacturing costs.Type: ApplicationFiled: March 19, 2020Publication date: March 23, 2023Inventors: Pachamuthu Kandasamy, Mamoru Shimizu, David Charles Donnell Butler, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Mohammed Rowshon Alam, Sethumadhavan Divakaramenon, Bijay Tilak Bhattarai, Chandra Vargeese, Keith Andrew Bowman, Stephany Michelle Standley
-
Patent number: 11608355Abstract: Among other things, the present disclosure provides technologies for oligonucleotide preparation, particularly chirally controlled oligonucleotide preparation, which technologies provide greatly improved crude purity and yield, and significantly reduce manufacturing costs.Type: GrantFiled: September 17, 2018Date of Patent: March 21, 2023Assignee: WAVE LIFE SCIENCES LTD.Inventors: Keith Andrew Bowman, Chandra Vargeese, David Charles Donnell Butler, Pachamuthu Kandasamy, Mohammed Rowshon Alam, Mamoru Shimizu, Stephany Michelle Standley, Vincent Aduda, Gopal Reddy Bommineni, Snehlata Tripathi, Ilia Korboukh
-
Publication number: 20220356204Abstract: The present disclosure, among other things, provides technologies for synthesis, including reagents and methods for stereoselective synthesis. In some embodiments, the present disclosure provides compounds useful as chiral auxiliaries. In some embodiments, the present disclosure provides reagents and methods for oligonucleotide synthesis. In some embodiments, the present disclosure provides reagents and methods for chirally controlled preparation of oligonucleotides. In some embodiments, technologies of the present disclosure are particularly useful for constructing challenging internucleotidic linkages, providing high yields and stereoselectivity.Type: ApplicationFiled: June 21, 2018Publication date: November 10, 2022Inventors: David Charles Donnell Butler, Christopher P. Hencken, Naoki Iwamoto, Pachamuthu Kandasamy, Alvaro Andres Lanao, Genliang Lu, Mamoru Shimizu, Sethumadhavan Divakaramenon, Chandra Vargeese, Gopal Reddy Bommineni, Subramanian Marappan
-
Publication number: 20220307019Abstract: A double-stranded nucleic acid complex is a double-stranded nucleic acid complex including a first nucleic acid strand and a second nucleic acid strand bonded to each other, the second nucleic acid strand including a complementary region having a base sequence complementary to the first nucleic acid strand; the first nucleic acid strand including natural nucleosides and non-natural nucleosides; some of the nucleosides in at least one nucleic acid strand selected from the group consisting of the first nucleic acid strand and the second nucleic acid strand being bonded together by bonds including asymmetric phosphorus atoms; and absolute configurations of the asymmetric phosphorus atoms being regulated.Type: ApplicationFiled: March 25, 2020Publication date: September 29, 2022Applicants: National University Corporation Tokyo Medical and Dental University, Wave Life Sciences LtdInventors: Takanori YOKOTA, Takeshi WADA, Mamoru SHIMIZU
-
Publication number: 20220306573Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods of use thereof. In some embodiments, the present disclosure provides technologies useful for reducing levels of transcripts. In some embodiments, the present disclosure provides technologies useful for modulating transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.Type: ApplicationFiled: April 11, 2019Publication date: September 29, 2022Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian
-
Publication number: 20220186217Abstract: Among other things, the present disclosure provides designed DMD oligonucleotides, compositions, and methods of use thereof. In some embodiments, the present disclosure provides technologies useful for repairing mutant DMD transcripts by skipping exon 51, so that the transcript can be translated into an internally truncated but at least partially functional Dystrophin protein variant. In some embodiments, the present disclosure provides technologies useful for modulating DMD transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) DMD transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as muscular dystrophy, including but not limited to Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.Type: ApplicationFiled: December 6, 2019Publication date: June 16, 2022Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian, Khoa Ngoc Dang Luu
-
Publication number: 20220127301Abstract: To provide a chiral reagent or a salt thereof. The chiral reagent has following chemical formula (I). In the formula (I), G1 and G2 are independently a hydrogen atom, a nitro group (—NO2), a halogen atom, a cyano group (—CN), a group of formula (II) or (III), or both G1 and G2 taken together to form a group of formula (IV).Type: ApplicationFiled: September 2, 2021Publication date: April 28, 2022Inventors: Mamoru Shimizu, Takeshi Wada
-
Publication number: 20220002389Abstract: The present inventors have conducted intensive studies on an antibody which controls HIV in an administration group with a high probability over a long period of time with one or several times of single-agent administration. As a result, the present inventors have surprisingly found that, when an SW-1C10 antibody, which is obtained by producing an antibody gene reported as 1C10 in silkworms, is singly administered only a few times, the viral load in the blood is suppressed to the detection limit or lower at an early stage in all of individuals to which the antibody has been administered, and moreover, the viral RNA load in the blood is maintained at the detection limit or lower for a long time of 12 weeks. Also, the yield of the antibody in silkworms is approximately several hundreds ?g per cocoon, or several ?g per 1 mg of cocoon, and studies to increase the productivity more than this level have not been conducted heretofore.Type: ApplicationFiled: October 28, 2019Publication date: January 6, 2022Inventors: Masahiro TOMITA, Mamoru SHIMIZU, Shuzo MATSUSHITA, Takeo KUWATA, Masahiro MICHISHITA, Yasuhiro YASUTOMI, Tomotaka OKAMURA
-
Patent number: 11136346Abstract: To provide a chiral reagent or a salt thereof. The chiral reagent has following chemical formula (I). In the formula (I), G1 and G2 are independently a hydrogen atom, a nitro group (—NO2), a halogen atom, a cyano group (—CN), a group of formula (II) or (III), or both G1 and G2 taken together to form a group of formula (IV).Type: GrantFiled: May 19, 2020Date of Patent: October 5, 2021Assignee: WAVE LIFE SCIENCES LTD.Inventors: Mamoru Shimizu, Takeshi Wada
-
Publication number: 20210254062Abstract: Among other things, the present disclosure provides designed DMD oligonucleotides, compositions, and methods of use GC thereof. In some embodiments, the present disclosure provides technologies useful for repairing mutant DMD transcripts by skipping exon 51 or exon 53, so that the transcript can be translated into an internally truncated but at least partially functional Dystrophin protein variant. In some embodiments, the present disclosure provides technologies useful for modulating DMD transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) DMD transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as muscular dystrophy, including but not limited to Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.Type: ApplicationFiled: May 10, 2019Publication date: August 19, 2021Applicant: WAVE LIFE SCIENCES LTD.Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian