Patents by Inventor Man Chun Law

Man Chun Law has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10208025
    Abstract: A triazole bridged flavonoid dimer compound library was efficiently constructed via the cycloaddition reaction of a series of flavonoid-containing azides (Az 1-15) and alkynes (Ac 1-17). These triazole bridged flavonoid dimers and their precursor alkyne- and azide-containing flavonoids were screened for their ability to modulate multidrug resistance (MDR) in P-gp-overexpressed cell line (LCC6MDR), MRP1-overexpressed cell line (2008/MRP1) and BCRP-overexpressed cell line (HEK293/R2 and MCF7-MX100). Generally, they displayed very promising MDR reversal activity against P-gp-, MRP1- and BCRP-mediated drug resistance. Moreover, they showed different levels of selectivity for various transporters. Overall, they can be divided into mono-selective, dual-selective and multi-selective modulators for the P-gp, MRP1 and BCRP transporters.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: February 19, 2019
    Assignees: The Hong Kong Polytechnic University, The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Larry Ming Cheung Chow, Tak Hang Chan, Kin Fai Chan, Iris Lai King Wong, Man Chun Law
  • Patent number: 9611256
    Abstract: A triazole bridged flavonoid dimer compound library was efficiently constructed via the cycloaddition reaction of a series of flavonoid-containing azides (Az 1-15) and alkynes (Ac 1-17). These triazole bridged flavonoid dimers and their precursor alkyne- and azide-containing flavonoids were screened for their ability to modulate multidrug resistance (MDR) in P-gp-overexpressed cell line (LCC6MDR), MRP1-overexpressed cell line (2008/MRP1) and BCRP-overexpressed cell line (HEK293/R2 and MCF7-MX100). Generally, they displayed very promising MDR reversal activity against P-gp-, MRP1- and BCRP-mediated drug resistance. Moreover, they showed different levels of selectivity for various transporters. Overall, they can be divided into mono-selective, dual-selective and multi-selective modulators for the P-gp, MRP1 and BCRP transporters.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 4, 2017
    Assignees: The Hong Kong Polytechnic University, McGill University
    Inventors: Larry Ming Cheung Chow, Tak Hang Chan, Kin Fai Chan, Iris Lai King Wong, Man Chun Law
  • Publication number: 20170044141
    Abstract: A triazole bridged flavonoid dimer compound library was efficiently constructed via the cycloaddition reaction of a series of flavonoid-containing azides (Az 1-15) and alkynes (Ac 1-17). These triazole bridged flavonoid dimers and their precursor alkyne- and azide-containing flavonoids were screened for their ability to modulate multidrug resistance (MDR) in P-gp-overexpressed cell line (LCC6MDR), MRP1-overexpressed cell line (2008/MRP1) and BCRP-overexpressed cell line (HEK293/R2 and MCF7-MX100). Generally, they displayed very promising MDR reversal activity against P-gp-, MRP1- and BCRP-mediated drug resistance. Moreover, they showed different levels of selectivity for various transporters. Overall, they can be divided into mono-selective, dual-selective and multi-selective modulators for the P-gp, MRP1 and BCRP transporters.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 16, 2017
    Inventors: Larry Ming Cheung Chow, Tak Hang Chan, Kin Fai Chan, Iris Lai King Wong, Man Chun Law
  • Publication number: 20150011513
    Abstract: A triazole bridged flavonoid dimer compound library was efficiently constructed via the cycloaddition reaction of a series of flavonoid-containing azides (Az 1-15) and alkynes (Ac 1-17). These triazole bridged flavonoid dimers and their precursor alkyne- and azide-containing flavonoids were screened for their ability to modulate multidrug resistance (MDR) in P-gp-overexpressed cell line (LCC6MDR), MRP1-overexpressed cell line (2008/MRP1) and BCRP-overexpressed cell line (HEK293/R2 and MCF7-MX100). Generally, they displayed very promising MDR reversal activity against P-gp-, MRP1- and BCRP-mediated drug resistance. Moreover, they showed different levels of selectivity for various transporters. Overall, they can be divided into mono-selective, dual-selective and multi-selective modulators for the P-gp, MRP1 and BCRP transporters.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 8, 2015
    Inventors: Larry Ming Cheung Chow, Tak Hang Chan, Kin Fai Chan, Iris Lai King Wong, Man Chun Law