Patents by Inventor Man Sang KWOK

Man Sang KWOK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896351
    Abstract: A fiber-optic sensor matt detects movements of a person on the matt that cause microbending of a fiber-optic cable that is arranged into a symmetric pair of radial ring groups within the matt. There are no cross-over points or overlapping of the fiber-optic cable within the symmetric pair of radial ring groups that could cause fiber wear and noisy readings. Microbending of the fiber-optic cable pressed into a mesh modulates the light intensity received, which is analyzed to extract both respiration and heart BallistoCardioGram (BCG) waveforms by convolution with Daubechies dB5 wavelet and scaling functions. The reconstructed level-4 detail waveform is output as the extracted BCG, while the reconstructed level-6 approximation waveform is output as the extracted respiration waveform. Respiration and heart rates and variations can be generated from the extracted waveforms. An integrated Fast Wavelet Transform (FWT) using dB5 wavelet thus generates both respiration rate and heart rate.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 13, 2024
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Qian Cheng Zhao, Tsz Chung Leung, Man Sang Kwok
  • Publication number: 20220133154
    Abstract: A fiber-optic sensor matt detects movements of a person on the matt that cause microbending of a fiber-optic cable that is arranged into a symmetric pair of radial ring groups within the matt. There are no cross-over points or overlapping of the fiber-optic cable within the symmetric pair of radial ring groups that could cause fiber wear and noisy readings. Microbending of the fiber-optic cable pressed into a mesh modulates the light intensity received, which is analyzed to extract both respiration and heart BallistoCardioGram (BCG) waveforms by convolution with Daubechies dB5 wavelet and scaling functions. The reconstructed level-4 detail waveform is output as the extracted BCG, while the reconstructed level-6 approximation waveform is output as the extracted respiration waveform. Respiration and heart rates and variations can be generated from the extracted waveforms. An integrated Fast Wavelet Transform (FWT) using dB5 wavelet thus generates both respiration rate and heart rate.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Qian Cheng ZHAO, Tsz Chung LEUNG, Man Sang KWOK