Patents by Inventor Manabu Nishijima

Manabu Nishijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11043717
    Abstract: A non-aqueous electrolyte secondary battery with improved cycle durability includes a power generating element including a positive electrode obtained by forming a positive electrode active material layer containing a positive electrode active material on a surface of a positive electrode current collector, a negative electrode obtained by forming a negative electrode active material layer containing a negative electrode active material on a surface of a negative electrode current collector, and a separator, a ratio of a rated capacity to a pore volume of the separator being 1.55 Ah/cc or more, a ratio of a battery area to a rated capacity being 4.0 cm2/Ah or more, and a rated capacity being 30 Ah or more, wherein a variation in porosity in the separator is 4.0% or less.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 22, 2021
    Assignee: Envision AESC Japan Ltd.
    Inventors: Manabu Nishijima, Fumihiro Kawamura, Yuji Muroya, Yoshiaki Nitta
  • Patent number: 10770716
    Abstract: A flat stacked type non-aqueous electrolyte secondary battery includes: a positive electrode comprising a a positive electrode active material formed on a surface of a positive electrode current collector, a negative electrode comprising a negative electrode active material formed on a surface of a negative electrode current collector, and an electrolyte layer, wherein a ratio of a rated capacity to a pore volume of the negative electrode active material layer is 1.12 Ah/cc or more, a ratio of a battery area to a rated capacity is 4.0 cm2/Ah or more, and a rated capacity is 30 Ah or more, and the electrolyte layer contains an electrolyte solution containing an electrolyte salt dissolved and a value obtained by dividing a weight of an electrolyte salt in pores in the negative electrode active material layer by a weight of the negative electrode active material is 0.031 or more.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: September 8, 2020
    Assignee: Envision AESC Japan Ltd.
    Inventors: Manabu Nishijima, Fumihiro Kawamura, Masanori Suenaga, Yuji Muroya
  • Publication number: 20190355969
    Abstract: Provided is a non-aqueous electrolyte secondary battery which has improved battery durability in the battery having a high capacity, a high density, and a large area. A non-aqueous electrolyte secondary battery including a power generating element including a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on a surface of a negative electrode current collector, and a separator, a ratio of a rated capacity to a pore volume of the positive electrode active material layer being 1.40 Ah/cc or more, a ratio of a battery area to a rated capacity being 4.0 cm2/Ah or more, and a rated capacity being 30 Ah or more, wherein a variation in porosity in the positive electrode active material layer is 6.0% or less.
    Type: Application
    Filed: June 8, 2016
    Publication date: November 21, 2019
    Inventors: Yuji Muroya, Fumihiro Kawamura, Manabu Nishijima, Yoshiaki Nitta
  • Patent number: 10476110
    Abstract: A non-aqueous electrolyte secondary battery has improved battery durability, a high capacity, a high density, and a large area and includes a power generating element including a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on a surface of a negative electrode current collector, and a separator, a ratio of a rated capacity to a pore volume of the negative electrode active material layer being 1.12 Ah/cc or more, a ratio of a battery area to a rated capacity being 4.0 cm2/Ah or more, and a rated capacity being 30 Ah or more, wherein a variation in porosity in the negative electrode active material layer is 6.0% or less.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: November 12, 2019
    Assignee: Envision AESC Japan Ltd.
    Inventors: Fumihiro Kawamura, Manabu Nishijima, Yuji Muroya, Yoshiaki Nitta
  • Publication number: 20190273285
    Abstract: Provided is a non-aqueous electrolyte secondary battery which has improved battery durability in the battery having a high capacity, a high density, and a large area. A non-aqueous electrolyte secondary battery including a power generating element including a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on a surface of a negative electrode current collector, and a separator, a ratio of a rated capacity to a pore volume of the negative electrode active material layer being 1.12 Ah/cc or more, a ratio of a battery area to a rated capacity being 4.0 cm2/Ah or more, and a rated capacity being 30 Ah or more, wherein a variation in porosity in the negative electrode active material layer is 6.0% or less.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 5, 2019
    Inventors: Fumihiro Kawamura, Manabu Nishijima, Yuji Muroya, Yoshiaki Nitta
  • Publication number: 20190259999
    Abstract: Provided is a means capable of improving battery cycle durability in a non-aqueous electrolyte secondary battery having a capacity and a size which are assumed to increase the capacity. A non-aqueous electrolyte secondary battery including a power generating element including a positive electrode obtained by forming a positive electrode active material layer containing a positive electrode active material on a surface of a positive electrode current collector, a negative electrode obtained by forming a negative electrode active material layer containing a negative electrode active material on a surface of a negative electrode current collector, and a separator, a ratio of a rated capacity to a pore volume of the separator being 1.55 Ah/cc or more, a ratio of a battery area to a rated capacity being 4.0 cm2/Ah or more, and a rated capacity being 30 Ah or more, wherein a variation in porosity in the separator is 4.0% or less.
    Type: Application
    Filed: June 8, 2016
    Publication date: August 22, 2019
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Manabu NISHIJIMA, Fumihiro KAWAMURA, Yuji MUROYA, Yoshiaki NITTA
  • Publication number: 20190252675
    Abstract: A non-aqueous electrolyte secondary battery is obtained by encasing, inside an outer casing formed of a laminate film, a power generating element containing a positive electrode obtained by forming, on the surface of a positive electrode current collector, a positive electrode active substance layer containing a positive electrode active substance, a negative electrode obtained by forming, on the surface of a negative electrode current collector, a negative electrode active substance layer containing a negative electrode active substance, and a separator, wherein the positive electrode active substance is made to contain a spinel type lithium manganese composite oxide and a lithium nickel-based composite oxide and the mixing ratio of the lithium nickel-based composite oxide is 30 to 70% by weight relative to the total 100% by weight of the spinel type lithium manganese composite oxide and the lithium nickel-based composite oxide.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Kenji Ohara, Yoshiaki Nitta, Manabu Nishijima, Hidenori Murata
  • Publication number: 20190165361
    Abstract: To provide a non-aqueous electrolyte secondary battery exhibiting improved battery durability in a flat stacked type battery having a high capacity, a high density and a large area. A solution is a flat stacked type non-aqueous electrolyte secondary battery including a power generating element including: a positive electrode comprising a positive electrode active material layer containing a positive electrode active material formed on a surface of a positive electrode current collector, a negative electrode comprising a negative electrode active material layer containing a negative electrode active material formed on a surface of a negative electrode current collector, and an electrolyte layer, wherein a ratio of a rated capacity to a pore volume of the negative electrode active material layer is 1.12 Ah/cc or more, a ratio of a battery area to a rated capacity is 4.
    Type: Application
    Filed: June 8, 2016
    Publication date: May 30, 2019
    Inventors: Manabu Nishijima, Fumihiro Kawamura, Masanori Suenaga, Yuji Muroya
  • Patent number: 10199680
    Abstract: An electric device having a power generating element contains a positive electrode with a positive electrode active material formed on a surface of a positive electrode current collector, a negative electrode, and a separator containing an electrolyte. The positive electrode active material contains a lithium nickel-based composite oxide having a layered crystal structure capable of insertion and desorption of lithium ions, the composition represented by: [Li?Ni?]3a[NixMny-rMrCOz]3bO2, wherein M is at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu, Ag, and Zn, and x+y+z?1, ??0.032, 0.9??+??1.2, 0<x<1, 0<y<1, 0<z<1, and 0?r?0.3, and the electrolyte has a cyclic sulfonic acid ester.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: February 5, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Sakamoto, Manabu Nishijima, Yosuke Suzuki
  • Patent number: 9716266
    Abstract: [Object] Provided is a means for improving cycle characteristics by suppressing electrode deterioration resulting from non-uniformity of voltage across an electrode plane in a high-capacity and large-area non-aqueous electrolyte secondary battery that includes lithium nickel-based composite oxide as a positive electrode active substance.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 25, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Ohara, Yoshiaki Nitta, Satoru Ichikawa, Gentaro Kano, Manabu Nishijima, Osamu Shimamura, Fumihiro Kawamura, Kousuke Hagiyama, Shigeo Ibuka, Manabu Kaseda, Masanori Suenaga, Tamaki Hirai, Masahiro Takaya, Kuniharu Nomoto
  • Publication number: 20170170513
    Abstract: An electric device having a power generating element contains a positive electrode with a positive electrode active material formed on a surface of a positive electrode current collector, a negative electrode, and a separator containing an electrolyte. The positive electrode active material contains a lithium nickel-based composite oxide having a layered crystal structure capable of insertion and desorption of lithium ions, the composition represented by: [Li?Ni?]3a[NixMny-rMrCoz]3bO2, wherein M is at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu, Ag, and Zn, and x+y+z?1, ??0.032, 0.9??+??1.2, 0<x<1, 0<y<1, 0<z<1, and 0?r?0.3, and the electrolyte has a cyclic sulfonic acid ester.
    Type: Application
    Filed: April 10, 2015
    Publication date: June 15, 2017
    Inventors: Kazuyuki Sakamoto, Manabu Nishijima, Yosuke Suzuki
  • Patent number: 9608261
    Abstract: [Object] Provided is a means for improving cycle characteristics by suppressing electrode deterioration resulting from non-uniformity of voltage across an electrode plane in a high-capacity and large-area non-aqueous electrolyte secondary battery that includes lithium nickel-based composite oxide as a positive electrode active substance.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 28, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Ohara, Yoshiaki Nitta, Satoru Ichikawa, Gentaro Kano, Manabu Nishijima, Osamu Shimamura, Fumihiro Kawamura, Kousuke Hagiyama, Shigeo Ibuka, Manabu Kaseda, Masanori Suenaga, Tamaki Hirai, Masahiro Takaya, Kuniharu Nomoto
  • Publication number: 20160079589
    Abstract: A non-aqueous electrolyte secondary battery is obtained by encasing, inside an outer casing formed of a laminate film, a power generating element containing a positive electrode obtained by forming, on the surface of a positive electrode current collector, a positive electrode active substance layer containing a positive electrode active substance, a negative electrode obtained by forming, on the surface of a negative electrode current collector, a negative electrode active substance layer containing a negative electrode active substance, and a separator, wherein the positive electrode active substance is made to contain a spinel type lithium manganese composite oxide and a lithium nickel-based composite oxide and the mixing ratio of the lithium nickel-based composite oxide is 30 to 70% by weight relative to the total 100% by weight of the spinel type lithium manganese composite oxide and the lithium nickel-based composite oxide.
    Type: Application
    Filed: April 23, 2014
    Publication date: March 17, 2016
    Inventors: Kenji OHARA, Yoshiaki NITTA, Manabu NISHIJIMA, Hidenori MURATA
  • Publication number: 20160036044
    Abstract: [Object] Provided is a means for improving cycle characteristics by suppressing electrode deterioration resulting from non-uniformity of voltage across an electrode plane in a high-capacity and large-area non-aqueous electrolyte secondary battery that includes lithium nickel-based composite oxide as a positive electrode active substance.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 4, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji OHARA, Yoshiaki NITTA, Satoru ICHIKAWA, Gentaro KANO, Manabu NISHIJIMA, Osamu SHIMAMURA, Fumihiro KAMAMURA, Kousuke HAGIYAMA, Shigeo IBUKA, Manabu KASEDA, Masanori SUENAGA, Tamaki HIRAI, Masahiro TAKAYA, Kuniharu NOMOTO
  • Publication number: 20160028073
    Abstract: [Object] Provided is a means for improving cycle characteristics by suppressing electrode deterioration resulting from non-uniformity of voltage across an electrode plane in a high-capacity and large-area non-aqueous electrolyte secondary battery that includes lithium nickel-based composite oxide as a positive electrode active substance.
    Type: Application
    Filed: March 13, 2014
    Publication date: January 28, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji OHARA, Yoshiaki NITTA, Satoru ICHIKAWA, Gentaro KANO, Manabu NISHIJIMA, Osamu SHIMAMURA, Fumihiro KAWAMURA, Kousuke HAGIYAMA, Shigeo IBUKA, Manabu KASEDA, Masanori SUENAGA, Tamaki HIRAI, Masahiro TAKAYA, Kuniharu NOMOTO
  • Patent number: 8454925
    Abstract: In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M? F2 are subjected to a mechanical milling process to produce metal fluoride compound AM? F3. The mechanical milling process desirably uses a planetary ball mill.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: June 4, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., Kyushu University, National University Corporation
    Inventors: Shigeto Okada, Manabu Nishijima, Takayuki Doi, Jun-ichi Yamaki, Irina D. Gocheva, Toshiyasu Kiyabu
  • Publication number: 20100261051
    Abstract: A sodium ion secondary battery having far superior potential stability during discharge when repeatedly charging and discharging, and a negative electrode active material capable of being efficiently doped and dedoped with sodium ions used therefor are provided. The sodium ion secondary battery according to the present invention includes a positive electrode containing a positive electrode active material capable of being doped and dedoped with sodium ions, a negative electrode containing a negative electrode active material containing, as a sole component or as a main component, a glassy carbonaceous material capable of being doped and dedoped with sodium ions, and an electrolyte containing sodium ions. Further, the negative electrode active material for a non-aqueous electrolyte sodium ion secondary battery according to the present invention includes a glassy carbonaceous material as a sole component or as a main component.
    Type: Application
    Filed: November 21, 2008
    Publication date: October 14, 2010
    Applicant: KYUSHU UNIVERSITY
    Inventors: Shigeto Okada, Manabu Nishijima, Takayuki Doi, Jun-ichi Yamaki, Masami Makidera, Taketsugu Yamamoto
  • Publication number: 20100035155
    Abstract: In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M? F2 are subjected to a mechanical milling process to produce metal fluoride compound AM? F3. The mechanical milling process desirably uses a planetary ball mill.
    Type: Application
    Filed: November 16, 2007
    Publication date: February 11, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Shigeto Okada, Manabu Nishijima, Takayuki Doi, Jun-ichi Yamaki, Irina D. Gocheva, Toshiyasu Kiyabu