Patents by Inventor Manat Maolinbay
Manat Maolinbay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240415482Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: ApplicationFiled: August 23, 2024Publication date: December 19, 2024Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 12144670Abstract: Disclosed are image recognition Artificial Intelligence (AI) training methods for multiple pulsed X-ray source-in-motion tomosynthesis imaging system. Image recognition AI training can be performed three ways: first, using existing acquired chest CT data set with known nodules to generate synthetic tomosynthesis Images, no X-ray radiation applied; second, taking X-ray raw images with anthropomorphic chest phantoms with simulated lung nodules, applying X-ray beam on phantom only; third, acquiring X-ray images using multiple pulsed source-in-motion tomosynthesis images from real patients with real known nodules and without nodules. An X-ray image recognition training network that is configured to receive X-ray training images, automatically determine whether the received images indicate a nodule or lesion condition. After training, image knowledge is updated and stored at knowledge database.Type: GrantFiled: March 1, 2022Date of Patent: November 19, 2024Assignee: AIXSCAN Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 12115012Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: GrantFiled: August 20, 2023Date of Patent: October 15, 2024Assignee: AIXSCANInventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-Yuan Ku, Yichin Liu
-
Patent number: 12102469Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: GrantFiled: November 20, 2023Date of Patent: October 1, 2024Assignee: AIXScan Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 12042310Abstract: A dynamic multi-leaf collimator system for X-ray exposure on region of interest in conjunction with multiple source-in-motion tomosynthesis imaging system is disclosed. The system comprises two opposite banks of thin heavy metal leaves arranged in parallel and stagger formation. The leaves are individually driven by electrical motors, can move in straight line in at least one direction and create multiple X-ray exposure holes with desired shapes. The leaves are made of thin heavy metal capable of blocking kV level X-rays. After a preliminary X-ray imaging scan, artificial intelligence or system operator can determine location of region of interest and then determine location of collimation holes. Therefore, subsequent X-ray imaging scan will be performed with automatic collimation dynamically, X-ray dose on an object or patient is then greatly reduced.Type: GrantFiled: February 3, 2022Date of Patent: July 23, 2024Assignee: AIXScan Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 12023193Abstract: An X-ray imaging system using multiple pulsed X-ray source pairs in-motion to perform highly efficient and ultrafast 3D radiography is presented. The sources move simultaneously on arc trajectory at a constant speed as a group. Each individual source also moves rapidly around its static position in a small distance, but one moves in opposite direction to the other to cancel out linear momentum. Trajectory can also be arranged at a ring structure horizontally. In X-ray source pairs each moves in opposite angular direction to another to cancel out angular momentum. When an individual X-ray source has a speed that equals to group speed but an opposite linear or angular direction, the individual X-ray source is triggered through an external exposure control unit. This allows the source to stay relatively standstill during activation. 3D data can be acquired with wider view in shorter time and image analysis is real-time.Type: GrantFiled: March 10, 2022Date of Patent: July 2, 2024Assignee: AIxSCAN, Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 12025758Abstract: Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.Type: GrantFiled: June 6, 2023Date of Patent: July 2, 2024Assignee: RefleXion Medical, Inc.Inventor: Manat Maolinbay
-
Transport system with curved tracks for multiple pulsed X-ray source-in-motion tomosynthesis imaging
Patent number: 11992357Abstract: A transport system with curved track pair is constructed for multiple pulsed X-ray source-in-motion to perform fast digital tomosynthesis imaging. It includes a curved rigid track pair with predetermined curvature, a primary motor stage car loaded with X-ray sources and wheels loaded with tension or compression springs. The car is driven by primary motor mounted at base frame and an engaged gear mounted at the car. The car can carry heavy loads, travel with high precision and high repeatability at all installation orientations while motion vibration is minimal. It is also scalable to have a larger radius. Track angle span usually can be from about ten degrees to about 170 degrees. During imaging acquisition, X-ray sources can sweep precisely from one location to another. The car has enough clearance to move in its path without rubbing wheels on tracks. Better than 0.2 mm overall spatial precision can be achieved with the digital tomosynthesis imaging.Type: GrantFiled: March 31, 2022Date of Patent: May 28, 2024Assignee: AIXScan Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang -
Publication number: 20240122568Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: ApplicationFiled: November 20, 2023Publication date: April 18, 2024Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 11918403Abstract: System and method are disclosed for imaging acquisition from sparse partial scans of distributed wide angle. During real time image reconstruction, artificial intelligence (AI) determines if there is enough information to perform diagnostics based on initial scans. If there is enough information from the fractional scans, then data acquisition stops; if more information is needed, then system performs another round of wide-angle sparse scans in a new location progressively until a result is satisfactory. The system reduces X-ray dose on a patient and performs quicker X-ray scan at multiple pulsed source-in-motion tomosynthesis imaging system. The method and system also significantly reduce the amount of time required to display high quality three-dimensional tomosynthesis images.Type: GrantFiled: December 10, 2021Date of Patent: March 5, 2024Assignee: AlxSCAN, Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 11904184Abstract: A radiation therapy system comprising a therapeutic radiation system (e.g., an MV X-ray source, and/or a linac) and a co-planar imaging system (e.g., a kV X-ray system) on a fast rotating ring gantry frame. The therapeutic radiation system and the imaging system are separated by a gantry angle, and the gantry frame may rotate in a direction such that the imaging system leads the MV system. The radiation sources of both the therapeutic and imaging radiation systems are each collimated by a dynamic multi-leaf collimator (DMLC) disposed in the beam path of the MV X-ray source and the kV X-ray source, respectively. In one variation, the imaging system identifies patient tumor(s) positions in real-time. The DMLC for the imaging radiation source limits the kV X-ray beam spread to the tumor(s) and/or immediate tumor regions, and helps to reduce irradiation of healthy tissue (e.g., reduce the dose-area product).Type: GrantFiled: November 9, 2022Date of Patent: February 20, 2024Assignee: RefleXion Medical, Inc.Inventor: Manat Maolinbay
-
Patent number: 11857359Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: GrantFiled: March 21, 2023Date of Patent: January 2, 2024Assignee: AlxScan Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Publication number: 20230404502Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: ApplicationFiled: August 20, 2023Publication date: December 21, 2023Inventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-yuan Ku, Yichin Liu
-
Patent number: 11794036Abstract: Described here are systems, devices, and methods for imaging and radiotherapy procedures. Generally, a radiotherapy system may include a radiotransparent patient platform, a radiation source coupled to a multi-leaf collimator, and a detector facing the collimator. The radiation source may be configured to emit a first beam through the collimator to provide treatment to a patient on the patient platform. A controller may be configured to control the radiotherapy system.Type: GrantFiled: June 2, 2020Date of Patent: October 24, 2023Assignee: RefleXion Medical, Inc.Inventors: Rostem Bassalow, Manat Maolinbay, Brent Harper
-
Patent number: 11771387Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Each individual X-ray source can also move rapidly around its static position in a small distance. When an X-ray source has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source stay momentarily standstill. It results in much reduced source travel distance for each X-ray source. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: GrantFiled: January 14, 2021Date of Patent: October 3, 2023Assignee: AIXSCAN Inc.Inventors: Jianqiang Liu, Linbo Yang, Manat Maolinbay, Xiaohui Tang, Chwen-yuan Ku, Yichin Liu
-
Patent number: 11766231Abstract: A system and method for improved image acquisition of multiple pulsed X-ray source-in-motion tomosynthesis imaging apparatus by generating the electrocardiogram (ECG) waveform data using an ECG device. Once a representative cardiac cycle is determined, system will acquire images only at rest period of heart beat. Real time ECG waveform is used as ECG synchronization for image improvement. The imaging apparatus avoids ECG peak pulse for better chest, lung and breast imaging under influence of cardiac periodical motion. As a result, smoother data acquisition, much higher data quality can be achieved. The multiple pulsed X-ray source-in-motion tomosynthesis machine is with distributed multiple X-ray sources that is spanned at wide scan angle. At rest period of one heartbeat, multiple X-ray exposures are acquired from X-ray sources at different angles. The machine itself has capability to acquire as many as 60 actual projection images within about two seconds.Type: GrantFiled: November 10, 2021Date of Patent: September 26, 2023Assignee: AIXSCAN INC.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 11730439Abstract: An X-ray imaging system using multiple pulsed X-ray sources in motion to perform high efficient and ultrafast 3D radiography using an X-ray flexible curved panel detector is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The sources move simultaneously relative to an object on a predefined arc track at a constant speed as a group. Each individual X-ray source can move around its static position at a small distance. When an individual source has a speed equal to group speed, but with opposite moving direction, the individual source and detector are activated. This allows source to stay relatively standstill during activation. The operation results in reduced source travel distance for each individual source. 3D radiography image data can be acquired with much wider sweep angle in much shorter time, and image analysis can also be done in real-time.Type: GrantFiled: October 20, 2021Date of Patent: August 22, 2023Assignee: AIXSCAN, Inc.Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Publication number: 20230255584Abstract: An X-ray imaging system using multiple pulsed X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple pulsed X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: ApplicationFiled: March 21, 2023Publication date: August 17, 2023Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
-
Patent number: 11714202Abstract: Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.Type: GrantFiled: April 1, 2022Date of Patent: August 1, 2023Assignee: RefleXion Medical, Inc.Inventor: Manat Maolinbay
-
Publication number: 20230225693Abstract: An X-ray imaging system using multiple puked X-ray sources to perform highly efficient and ultrafast 3D radiography is presented. There are multiple puked X-ray sources mounted on a structure in motion to form an array of sources. The multiple X-ray sources move simultaneously relative to an object on a pre-defined arc track at a constant speed as a group. Electron beam inside each individual X-ray tube is deflected by magnetic or electrical field to move focal spot a small distance. When focal spot of an X-ray tube beam has a speed that is equal to group speed but with opposite moving direction, the X-ray source and X-ray flat panel detector are activated through an external exposure control unit so that source tube stay momentarily standstill equivalently. 3D scan can cover much wider sweep angle in much shorter time and image analysis can also be done in real-time.Type: ApplicationFiled: March 22, 2023Publication date: July 20, 2023Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang