Patents by Inventor Maneesh A. Shrivastav

Maneesh A. Shrivastav has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10368808
    Abstract: Embodiments describe a method of determining etiology of undiagnosed events comprising monitoring electrocardiogram signals and blood pressure of a patient via a medical device, capturing one or more of an ECG segment and a BP reading in response to a triggering event, classifying one or more of the ECG segment and BP reading as normal or abnormal, and determining etiology of undiagnosed symptomatic events based on the classification. Embodiments further describe a medical device comprising sensors for monitoring ECG signals and BP of a patient, circuitry for capturing one or more of ECG segments and BP readings of a patient in response to a triggering event, and a processor for communicating one of more of captured ECG segments and captured BP readings to a remote monitoring center directly or indirectly where the captured ECG segments and captured BP readings are classified as normal or abnormal.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 6, 2019
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Brian B. Lee, ShaileshKumar V. Musley, Robert W. Stadler, Maneesh Shrivastav, Randal Schulhauser, Stacie Vilendrer
  • Patent number: 10342445
    Abstract: A system and method of monitoring electrocardiogram (ECG) signals and detecting ischemic conditions. In particular, high-frequency components and low-frequency components are extracted from the monitored ECG signal. The high-frequency components are analyzed to detect reduced amplitude zones (RAZs), while the low-frequency components are utilized to detect premature ventricular contraction (PVC) beats. Potentially ischemic conditions are identified based on both RAZs and PVC beats detected.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: July 9, 2019
    Assignee: Medtronic Monitoring, Inc.
    Inventors: ShaileshKumar V. Musley, Maneesh Shrivastav, Stacie Vilendrer
  • Publication number: 20180116598
    Abstract: Embodiments describe a method of determining etiology of undiagnosed events comprising monitoring electrocardiogram signals and blood pressure of a patient via a medical device, capturing one or more of an ECG segment and a BP reading in response to a triggering event, classifying one or more of the ECG segment and BP reading as normal or abnormal, and determining etiology of undiagnosed symptomatic events based on the classification. Embodiments further describe a medical device comprising sensors for monitoring ECG signals and BP of a patient, circuitry for capturing one or more of ECG segments and BP readings of a patient in response to a triggering event, and a processor for communicating one of more of captured ECG segments and captured BP readings to a remote monitoring center directly or indirectly where the captured ECG segments and captured BP readings are classified as normal or abnormal.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Applicant: Medtronic Monitoring, Inc.
    Inventors: Brian B. LEE, ShaileshKumar V. MUSLEY, Robert W. STADLER, Maneesh SHRIVASTAV, Randal SCHULHAUSER, Stacie VILENDRER
  • Publication number: 20180116538
    Abstract: A system and method of monitoring electrocardiogram (ECG) signals and detecting ischemic conditions. In particular, high-frequency components and low-frequency components are extracted from the monitored ECG signal. The high-frequency components are analyzed to detect reduced amplitude zones (RAZs), while the low-frequency components are utilized to detect premature ventricular contraction (PVC) beats. Potentially ischemic conditions are identified based on both RAZs and PVC beats detected.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 3, 2018
    Applicant: Medtronic Monitoring, Inc.
    Inventors: ShaileshKumar V. MUSLEY, Maneesh SHRIVASTAV, Stacie VILENDRER
  • Patent number: 8372013
    Abstract: A method of determining a respiration parameter in a medical device in which pressure signals are sensed to generate corresponding sample points, and a breath detection threshold is continuously adjusted in response to the generated sample points to generate a current adjusted breath detection threshold. A current generated sample point is compared to the current adjusted breath detection threshold, and the continuous adjusting of the breath detection threshold is suspended and the breath detection threshold is equal to the most current adjusted breath detection threshold generated prior to the suspending in response to the comparing. A next sample point, generated subsequent to the suspending, is compared to the set breath detection threshold, and the respiration parameter is determined in response to the comparing of a next sample point to the set breath detection threshold.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Maneesh Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling
  • Patent number: 8231536
    Abstract: A medical device for determining a respiratory effort having a pressure sensor to sense pressure signals, a housing having system components positioned therein, and a microprocessor positioned within the housing, wherein the microprocessor detects an inspiration and an expiration in response to the pressure signals, detects a breath in response to the detected inspiration and the detected expiration, and determines the respiratory effort in response to the detected breath.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 31, 2012
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Patent number: 8202223
    Abstract: A method of determining respiratory effort in a medical device in which pressure signals are sensed to generate corresponding sample points, an inspiration and an expiration are detected in response to the sensed pressure signals, a breath is detected in response to the detected inspiration and the detected expiration, and the respiratory effort is determined in response to the detected breath.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: June 19, 2012
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Patent number: 8200329
    Abstract: A medical device and associated method for detecting arrhythmias that includes electrodes for sensing cardiac electrical signals and a hemodynamic sensor for sensing a hemodynamic signal. An episode of cardiac electrical event intervals meeting cardiac arrhythmia detection criteria is detected from the sensed electrical signals. Cardiac mechanical events and/or cardiac mechanical event intervals are measured from the hemodynamic signal and used to withhold or confirm a cardiac arrhythmia detection of the episode.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: June 12, 2012
    Assignee: Medtronic, Inc.
    Inventors: Teresa A. Whitman, Arun Kumar, Karen J. Kleckner, Jeffrey M. Gillberg, Troy E. Jackson, Mark L. Brown, Maneesh Shrivastav
  • Patent number: 8121682
    Abstract: A medical device and associated method for detecting arrhythmias that includes sensing cardiac electrical signals and cardiac hemodynamic signals, determining a long-term baseline hemodynamic measurement in response to a plurality of the sensed cardiac hemodynaic signals, detecting a period of increased metabolic demand in response to the sensed cardiac electrical signals, determining a sinus tachycardia baseline hemodynamic measurement in response sensing of cardiac hemododynamic signals during the detected period of increased metabolic demand, and detecting the arrhythmia and delivering therapy in response to one of only the sensed cardiac electrical signals and the sensed cardiac electrical signals in combination with one or both of the determined long-term baseline hemodynamic measurement and the sinus tachycardia baseline hemodynamic measurement.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: February 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Teresa A. Whitman, Arun Kumar, Karen J. Kleckner, Jeffrey M. Gillberg, Troy E. Jackson, Maneesh Shrivastav, Mark L. Brown
  • Patent number: 8047999
    Abstract: A system and method for filtering a pressure signal in a medical device in which a sensor terminal senses the pressure signal, an electrode terminal receives cardiac electrical signals, a signal filtering system filters the sensed pressure signal in response to a determined heart rate to generate a heart-rate dependent frequency response, and a microprocessor derives a respiration signal in response to the heart rate dependent frequency response, and determines metrics of hemodynamic function in response to the derived respiration signal.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 1, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Patent number: 7831304
    Abstract: An implantable medical device system and method detect oversensing of cardiac signals. A cardiac signal including first events and second events is acquired. Cardiac events are sensed in response to the cardiac signal crossing a first threshold. A filtered cardiac signal is determined from the sensed cardiac signal, and a second threshold is determined from the filtered cardiac signal. A sensed cardiac event is classified either as a first event when the sensed cardiac event corresponds to a filtered cardiac signal peak crossing the second threshold or a second event when the sensed cardiac event corresponds to a filtered cardiac signal peak being less than the second threshold. Classification of sensed cardiac events as second events is used in determining oversensing.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 9, 2010
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Jeffrey M. Gillberg, Maneesh Shrivastav, Scott R. Stanskaski
  • Publication number: 20100241180
    Abstract: A medical device and associated method for detecting arrhythmias that includes electrodes for sensing cardiac electrical signals and a hemodynamic sensor for sensing a hemodynamic signal. An episode of cardiac electrical event intervals meeting cardiac arrhythmia detection criteria is detected from the sensed electrical signals. Cardiac mechanical events and/or cardiac mechanical event intervals are measured from the hemodynamic signal and used to withhold or confirm a cardiac arrhythmia detection of the episode.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 23, 2010
    Inventors: Teresa A. Whitman, Arun Kumar, Karen J. Kleckner, Jeffrey M. Gillberg, Troy E. Jackson, Mark L. Brown, Maneesh Shrivastav
  • Publication number: 20100241182
    Abstract: A medical device and associated method for detecting arrhythmias that includes sensing cardiac electrical signals and cardiac hemodynamic signals, determining a long-term baseline hemodynamic measurement in response to a plurality of the sensed cardiac hemodynaic signals, detecting a period of increased metabolic demand in response to the sensed cardiac electrical signals, determining a sinus tachycardia baseline hemodynamic measurement in response sensing of cardiac hemododynamic signals during the detected period of increased metabolic demand, and detecting the arrhythmia and delivering therapy in response to one of only the sensed cardiac electrical signals and the sensed cardiac electrical signals in combination with one or both of the determined long-term baseline hemodynamic measurement and the sinus tachycardia baseline hemodynamic measurement
    Type: Application
    Filed: March 23, 2010
    Publication date: September 23, 2010
    Inventors: Teresa A. Whitman, Arun Kumar, Karen J. Kleckner, Jeffrey M. Gillberg, Troy E. Jackson, Maneesh Shrivastav, Mark L. Brown
  • Publication number: 20100076325
    Abstract: A method of determining respiratory effort in a medical device in which pressure signals are sensed to generate corresponding sample points, an inspiration and an expiration are detected in response to the sensed pressure signals, a breath is detected in response to the detected inspiration and the detected expiration, and the respiratory effort is determined in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076322
    Abstract: A method of determining a respiration parameter in a medical device in which pressure signals are sensed to generate corresponding sample points, and a breath detection threshold is continuously adjusted in response to the generated sample points to generate a current adjusted breath detection threshold. A current generated sample point is compared to the current adjusted breath detection threshold, and the continuous adjusting of the breath detection threshold is suspended and the breath detection threshold is equal to the most current adjusted breath detection threshold generated prior to the suspending in response to the comparing. A next sample point, generated subsequent to the suspending, is compared to the set breath detection threshold, and the respiration parameter is determined in response to the comparing of a next sample point to the set breath detection threshold.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Maneesh A. Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling
  • Publication number: 20100076324
    Abstract: A medical device for determining a respiratory effort having a pressure sensor to sense pressure signals, a housing having system components positioned therein, and a microprocessor positioned within the housing, wherein the microprocessor detects an inspiration and an expiration in response to the pressure signals, detects a breath in response to the detected inspiration and the detected expiration, and determines the respiratory effort in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076323
    Abstract: An apparatus for determining a respiration parameter in a medical device in which a pressure sensor senses pressure signals, and a signal processor, coupled to the pressure sensor, receives the sensed pressure signals and generates corresponding sample points.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Maneesh Shrivastav, Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076514
    Abstract: A system and method for filtering a pressure signal in a medical device in which a sensor terminal senses the pressure signal, an electrode terminal receives cardiac electrical signals, a signal filtering system filters the sensed pressure signal in response to a determined heart rate to generate a heart-rate dependent frequency response, and a microprocessor derives a respiration signal in response to the heart rate dependent frequency response, and determines metrics of hemodynamic function in response to the derived respiration signal.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20080082014
    Abstract: An implantable medical device system and method detect oversensing of cardiac signals. A cardiac signal including first events and second events is acquired. Cardiac events are sensed in response to the cardiac signal crossing a first threshold. A filtered cardiac signal is determined from the sensed cardiac signal, and a second threshold is determined from the filtered cardiac signal. A sensed cardiac event is classified either as a first event when the sensed cardiac event corresponds to a filtered cardiac signal peak crossing the second threshold or a second event when the sensed cardiac event corresponds to a filtered cardiac signal peak being less than the second threshold. Classification of sensed cardiac events as second events is used in determining oversensing.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Jian Cao, Jeffrey M. Gillberg, Maneesh Shrivastav, Scott R. Stanskaski
  • Patent number: 6634994
    Abstract: The jump rope device employs DC motors to rotate two ropes and a dual closed loop control system is used to synchronize the turning movements of the two ropes. An infrared beam is used to monitor the use of the machine by a user. Each motor housing is mounted on a tripod support which can be collapsed for ease of transportation and storage. A floor mat with sensors may be employed for various exercises.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: October 21, 2003
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Tahira Reid, Burt Swersey, Paul Fiscarelli, Rory MacKean, Joe Doucette, Lakisha Anderson, Maneesh Shrivastav, Colleen Conlon, Thomas Manning, Kevin Haynes, Serge Rigaud, Eileen Carrier, William Foley