Patents by Inventor Manfred Franke

Manfred Franke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10441782
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 15, 2019
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20190308009
    Abstract: Described here are devices, systems, and methods for treating one or more conditions, such as allergic rhinitis, non-allergic rhinitis, nasal congestion, ocular allergy, and/or symptoms associated with these conditions, by providing stimulation to nasal or sinus tissue. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs, and the nasal insertion prongs may be configured to deliver an electrical stimulus to the tissue.
    Type: Application
    Filed: March 18, 2019
    Publication date: October 10, 2019
    Inventors: James Donald Loudin, Daniel N. Hamilton, Manfred Franke, Douglas Michael Ackermann
  • Patent number: 10434303
    Abstract: A neural stimulation system delivers neural stimulation to a target nerve with control of direction of propagation of evoked neural signals in one or more fiber types of the target nerve using electrode configuration, thereby providing effective therapy while minimizing unintended effects. In various embodiments, mechanical parameters of a multi-polar electrode are determined to provide directed propagation of the neural stimulation by effecting neural conduction block in or near the stimulation site. In various embodiments, the electrode includes a cathode for evoking action potentials and a plurality of anodes for blocking the propagation of the evoked action potentials in specified direction(s) and fiber type(s) while minimizing the formation of virtual cathodes.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: October 8, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, David J. Ternes, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble, Jason J. Hamann, Kevin J. Mohsenian, Jack Gordon
  • Patent number: 10426958
    Abstract: Described here are devices and methods for increasing ocular mucin and other tear protein release using intranasally delivered electrical stimulation. Generally, the devices may deliver electrical stimulation to the nasal mucosa. Intranasal stimulation may trigger degranulation of conjunctival goblet cells, which in turn releases secretory mucins into the tear fluid. The intranasal stimulation may also trigger release of lysozyme, lactoferrin, and other tear proteins into the aqueous layer of the tear film. The methods may further comprise obtaining feedback relating to the efficacy of the delivered electrical stimulation by measuring impedance or an electromyogram (EMG) signal.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 1, 2019
    Assignee: Oculeve, Inc.
    Inventors: James Donald Loudin, Manfred Franke, Douglas Michael Ackermann
  • Patent number: 10413731
    Abstract: An example of a system may include a stimulator and at least one controller. The stimulator may be configured to deliver nerve stimulation to capture a first set of axons in a nerve and to deliver depletion block stimulation to capture a second set of axons in the nerve, where the second set is a subset of the first. The depletion block stimulation may include a series of pulses at a depletion pulse frequency within a range between about 100 Hz to about 1 kHz, and the nerve stimulation may include a series of pulses at a stimulation pulse frequency within a range of about 0.25 Hz to about 50 Hz. At least a portion of the nerve stimulation and at least a portion of the depletion block stimulation may be delivered to be effective in providing a nerve block while delivering nerve stimulation.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: September 17, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, David J. Ternes, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble, Jason J. Hamann
  • Publication number: 20190269921
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Application
    Filed: November 3, 2017
    Publication date: September 5, 2019
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Tina Vrabec, Manfred Franke
  • Patent number: 10391323
    Abstract: An example of a method embodiment may include receiving a user programmable neural stimulation (NS) dose for an intermittent neural stimulation (INS) therapy, and delivering the INS therapy with the user programmable NS dose to an autonomic neural target of a patient. Delivering the INS therapy may include delivering NS bursts, and delivering the NS bursts may include delivering a number of NS pulses per cardiac cycle during a portion of the cardiac cycles and not delivering NS pulses during a remaining portion of the cardiac cycles. The method may further include sensing cardiac events within the cardiac cycles, and controlling delivery of the user programmable NS dose of INS therapy using the sensed cardiac events to time delivery of the number of NS pulses per cardiac cycle to provide the user programmable NS dose. The user programmable NS dose may determine the number of NS pulses per cardiac cycle.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 27, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Jason J. Hamann, Stephen B. Ruble, Juan Gabriel Hincapie Ordonez, Manfred Franke
  • Publication number: 20190217095
    Abstract: Described here are systems, devices, and methods for implanting a nasal stimulator into nasal tissue and electrically stimulating nasal tissue. In some variations, a nasal microstimulator implantation system may comprise an implantation tool and an implantable microstimulator. An implantation tool may comprise a shaft and features to releasably attach a microstimulator. A microstimulator may comprise a passive stimulation circuit and one or more electrodes. In other variations, a nasal implantation system may additionally comprise one or more additional devices, such as a controller, an electrical probe, and/or a dissection tool.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 18, 2019
    Inventors: Manfred Franke, James Donald Loudin, Janusz Kuzma, Paul Taehyun Yu, Douglas Michael Ackermann
  • Publication number: 20190184160
    Abstract: One aspect of the present disclosure relates to a system that can provide an incomplete nerve block to a patient. In some instances, the incomplete nerve block can be bi-directional. In other instances, the incomplete nerve block can be adjustable. The system can include a waveform generator that can provide temporary electrical nerve conduction block to a nerve using an electrode. The electrode can include at least one contact. The temporary electrical nerve conduction block can block conduction in less than 100% of the fibers within the nerve located in close proximity to or being surrounded by the electrode. The temporary electrical nerve conduction block does not cause intentional damage to neural tissue as mode of action to achieve the incomplete nerve block. A complete recovery of nerve conduction can be expected post application of the incomplete nerve block.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Manfred Franke, Ashritha Epur, Benjamin Kaufmann
  • Publication number: 20190184173
    Abstract: One aspect of the present disclosure relates to a system that can prevent unintended signal components (noise) in an electric waveform that can be used for at least one of neural stimulation, block, and/or sensing. The system can include a signal generator to generate a waveform that includes an intended electric waveform and unintended noise. The system can also include a signal transformer device (e.g., a very long wire) comprising a first coil and a second coil. The first coil can be coupled to the signal generator to receive the waveform and remove the unintended noise from the electric waveform. The second coil can pass the electric waveform to an electrode. The second coil can be coupled to a capacitor that can prevent the waveform from developing noise at an electrode/electrolyte interface between an electrode and a nerve.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventor: Manfred Franke
  • Publication number: 20190167996
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 10252048
    Abstract: Described here are devices, systems, and methods for treating one or more conditions, such as allergic rhinitis, non-allergic rhinitis, nasal congestion, ocular allergy, and/or symptoms associated with these conditions, by providing stimulation to nasal or sinus tissue. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs, and the nasal insertion prongs may be configured to deliver an electrical stimulus to the tissue.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: April 9, 2019
    Assignee: Oculeve, Inc.
    Inventors: James Donald Loudin, Daniel N. Hamilton, Manfred Franke, Douglas Michael Ackermann
  • Publication number: 20190060640
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 28, 2019
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 10207108
    Abstract: Described here are systems, devices, and methods for implanting a nasal stimulator into nasal tissue and electrically stimulating nasal tissue. In some variations, a nasal microstimulator implantation system may comprise an implantation tool and an implantable microstimulator. An implantation tool may comprise a shaft and features to releasably attach a microstimulator. A microstimulator may comprise a passive stimulation circuit and one or more electrodes. In other variations, a nasal implantation system may additionally comprise one or more additional devices, such as a controller, an electrical probe, and/or a dissection tool.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: February 19, 2019
    Assignee: Oculeve, Inc.
    Inventors: Manfred Franke, James Donald Loudin, Janusz Kuzma, Paul Taehyun Yun, Douglas Michael Ackermann
  • Patent number: 10201709
    Abstract: An example of a system may include a depletion block neural stimulator and a depletion block controller. The depletion block neural stimulator may be configured to deliver a depletion block stimulation to a nerve. The depletion block stimulation may include a series of pulses at a pulse frequency within a range between about 100 Hz to about 1000 Hz. The depletion block controller may be configured to communicate with the depletion block neural stimulator and control the depletion block stimulation. The depletion block controller may be configured to receive a start depletion block signal and respond to the received start depletion block signal by initiating the delivery of the depletion block stimulation to the nerve, and the depletion block controller may be configured to receive a stop depletion block signal and respond to the received stop depletion block signal by terminating the delivery of the depletion block stimulation to the nerve.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: February 12, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, David J. Ternes, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble, Jason J. Hamann, Arjun D. Sharma
  • Patent number: 10195434
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: February 5, 2019
    Assignee: Case Western Reserve University
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20190022392
    Abstract: Described herein are devices and methods of use thereof for treating dry eye, tired eye, or other forms of ocular discomfort such as from contact lenses. The methods generally include applying spatially and/or temporally patterned stimulation to one or more anatomical structures located in an ocular or nasal region. The electrical stimulation may elicit a reflex that activates the lacrimal gland or may directly activate the lacrimal gland or nerves innervating the lacrimal gland to produce tears. The devices may be implantable or handheld, and may be configured to deliver the spatially and/or temporally patterned stimulation patterns described.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 24, 2019
    Inventors: Manfred Franke, James Donald Loudin, John Wardle, Mark Jeffrey Holdbrook
  • Publication number: 20180361155
    Abstract: One aspect of the present disclosure is a system including a waveform generator, a controller, and an electrical contact. The waveform generator is for generating an electrical nerve conduction block (ENCB). The controller is coupled with the waveform generator. The controller is configured to receive an input comprising at least one parameter to adjust the ENCB. The electrical contact is coupled with the wave-form generator. The electrical contact is configured to be placed into contact with a nerve. The electrical contact comprises a high charge capacity material that prevents formation of damaging electro-chemical products at a charge delivered by the ENCB. The electrical contact is configured to deliver the ENCB to the nerve to block transmission of a signal related to a pain through the nerve.
    Type: Application
    Filed: December 15, 2016
    Publication date: December 20, 2018
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 10112048
    Abstract: Described herein are devices and methods of use thereof for treating dry eye, tired eye, or other forms of ocular discomfort such as from contact lenses. The methods generally include applying spatially and/or temporally patterned stimulation to one or more anatomical structures located in an ocular or nasal region. The electrical stimulation may elicit a reflex that activates the lacrimal gland or may directly activate the lacrimal gland or nerves innervating the lacrimal gland to produce tears. The devices may be implantable or handheld, and may be configured to deliver the spatially and/or temporally patterned stimulation patterns described.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: October 30, 2018
    Assignee: Oculeve, Inc.
    Inventors: Manfred Franke, James Donald Loudin, John Wardle, Mark Jeffrey Holdbrook
  • Patent number: 10071241
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: September 11, 2018
    Assignee: Case Western Reserve University
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke