Patents by Inventor Manfred Otto

Manfred Otto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250094772
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network. One of the methods includes maintaining a replay memory that stores trajectories generated as a result of interaction of an agent with an environment; and training an action selection neural network having policy parameters on the trajectories in the replay memory, wherein training the action selection neural network comprises: sampling a trajectory from the replay memory; and adjusting current values of the policy parameters by training the action selection neural network on the trajectory using an off-policy actor critic reinforcement learning technique.
    Type: Application
    Filed: November 27, 2024
    Publication date: March 20, 2025
    Inventors: Ziyu Wang, Nicolas Manfred Otto Heess, Victor Constant Bapst
  • Patent number: 12190223
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network. One of the methods includes maintaining a replay memory that stores trajectories generated as a result of interaction of an agent with an environment; and training an action selection neural network having policy parameters on the trajectories in the replay memory, wherein training the action selection neural network comprises: sampling a trajectory from the replay memory; and adjusting current values of the policy parameters by training the action selection neural network on the trajectory using an off-policy actor critic reinforcement learning technique.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 7, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Ziyu Wang, Nicolas Manfred Otto Heess, Victor Constant Bapst
  • Publication number: 20240412072
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling an agent interacting with an environment using a population of action selection policies that are jointly represented by a population action selection neural network. In one aspect, a method comprises, at each of a plurality of time steps: obtaining an observation characterizing a current state of the environment at the time step; selecting a target action selection policy from the population of action selection policies; processing a network input comprising: (i) the observation, and (ii) a strategy embedding representing the target action selection policy, using the population action selection neural network to generate an action selection output; and selecting an action to be performed by the agent at the time step using the action selection output.
    Type: Application
    Filed: January 25, 2024
    Publication date: December 12, 2024
    Inventors: Siqi Liu, Luke Christopher Marris, Nicolas Manfred Otto Heess, Marc Lanctot
  • Publication number: 20240403652
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling agents. In particular, an agent can be controlled using a hierarchical controller that includes a high-level controller neural network, a mid-level controller neural network, and a low-level controller neural network.
    Type: Application
    Filed: October 5, 2022
    Publication date: December 5, 2024
    Inventors: Dushyant ` Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli, Giulia Vezzani, Dhruva Tirumala Bukkapatnam, Yusuf Aytar, Joshua Merel, Nicolas Manfred Otto Heess, Raia Thais Hadsell
  • Publication number: 20240311617
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling agents using a language model neural network and a vision-language model (VLM) neural network.
    Type: Application
    Filed: February 15, 2024
    Publication date: September 19, 2024
    Inventors: Norman Di Palo, Arunkumar Byravan, Nicolas Manfred Otto Heess, Martin Riedmiller, Leonard Hasenclever, Markus Wulfmeier
  • Publication number: 20240220795
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling agents using jumpy trajectory decoder neural networks.
    Type: Application
    Filed: December 29, 2023
    Publication date: July 4, 2024
    Inventors: Jingwei Zhang, Arunkumar Byravan, Jost Tobias Springenberg, Martin Riedmiller, Nicolas Manfred Otto Heess, Leonard Hasenclever, Abbas Abdolmaleki, Dushyant Rao
  • Publication number: 20240177002
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.
    Type: Application
    Filed: October 30, 2023
    Publication date: May 30, 2024
    Inventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
  • Patent number: 11983634
    Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 14, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Victor Constant Bapst, Wojciech Czarnecki, James Kirkpatrick, Yee Whye Teh, Nicolas Manfred Otto Heess
  • Publication number: 20240062035
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-efficient reinforcement learning. One of the systems is a system for training an actor neural network used to select actions to be performed by an agent that interacts with an environment by receiving observations characterizing states of the environment and, in response to each observation, performing an action selected from a continuous space of possible actions, wherein the actor neural network maps observations to next actions in accordance with values of parameters of the actor neural network, and wherein the system comprises: a plurality of workers, wherein each worker is configured to operate independently of each other worker, wherein each worker is associated with a respective agent replica that interacts with a respective replica of the environment during the training of the actor neural network.
    Type: Application
    Filed: July 12, 2023
    Publication date: February 22, 2024
    Inventors: Martin Riedmiller, Roland Hafner, Mel Vecerik, Timothy Paul Lillicrap, Thomas Lampe, Ivaylo Popov, Gabriel Barth-Maron, Nicolas Manfred Otto Heess
  • Patent number: 11886997
    Abstract: An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 30, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Olivier Pietquin, Martin Riedmiller, Wang Fumin, Bilal Piot, Mel Vecerik, Todd Andrew Hester, Thomas Rothoerl, Thomas Lampe, Nicolas Manfred Otto Heess, Jonathan Karl Scholz
  • Patent number: 11875258
    Abstract: Methods, systems, and apparatus for selecting actions to be performed by an agent interacting with an environment. One system includes a high-level controller neural network, low-level controller network, and subsystem. The high-level controller neural network receives an input observation and processes the input observation to generate a high-level output defining a control signal for the low-level controller. The low-level controller neural network receives a designated component of an input observation and processes the designated component and an input control signal to generate a low-level output that defines an action to be performed by the agent in response to the input observation.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: January 16, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Nicolas Manfred Otto Heess, Timothy Paul Lillicrap, Gregory Duncan Wayne, Yuval Tassa
  • Patent number: 11868882
    Abstract: An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 9, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Olivier Claude Pietquin, Martin Riedmiller, Wang Fumin, Bilal Piot, Mel Vecerik, Todd Andrew Hester, Thomas Rothoerl, Thomas Lampe, Nicolas Manfred Otto Heess, Jonathan Karl Scholz
  • Patent number: 11803750
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an actor neural network used to select actions to be performed by an agent interacting with an environment. One of the methods includes obtaining a minibatch of experience tuples; and updating current values of the parameters of the actor neural network, comprising: for each experience tuple in the minibatch: processing the training observation and the training action in the experience tuple using a critic neural network to determine a neural network output for the experience tuple, and determining a target neural network output for the experience tuple; updating current values of the parameters of the critic neural network using errors between the target neural network outputs and the neural network outputs; and updating the current values of the parameters of the actor neural network using the critic neural network.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: October 31, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver, Daniel Pieter Wierstra
  • Publication number: 20230330848
    Abstract: A neural network control system for controlling an agent to perform a task in a real-world environment, operates based on both image data and proprioceptive data describing the configuration of the agent. The training of the control system includes both imitation learning, using datasets generated from previous performances of the task, and reinforcement learning, based on rewards calculated from control data output by the control system.
    Type: Application
    Filed: April 25, 2023
    Publication date: October 19, 2023
    Inventors: Saran Tunyasuvunakool, Yuke Zhu, Joshua Merel, János Kramár, Ziyu Wang, Nicolas Manfred Otto Heess
  • Patent number: 11741334
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-efficient reinforcement learning. One of the systems is a system for training an actor neural network used to select actions to be performed by an agent that interacts with an environment by receiving observations characterizing states of the environment and, in response to each observation, performing an action selected from a continuous space of possible actions, wherein the actor neural network maps observations to next actions in accordance with values of parameters of the actor neural network, and wherein the system comprises: a plurality of workers, wherein each worker is configured to operate independently of each other worker, wherein each worker is associated with a respective agent replica that interacts with a respective replica of the environment during the training of the actor neural network.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: August 29, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Martin Riedmiller, Roland Hafner, Mel Vecerik, Timothy Paul Lillicrap, Thomas Lampe, Ivaylo Popov, Gabriel Barth-Maron, Nicolas Manfred Otto Heess
  • Publication number: 20230214649
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection system using reinforcement learning techniques. In one aspect, a method comprises at each of multiple iterations: obtaining a batch of experience, each experience tuple comprising: a first observation, an action, a second observation, and a reward; for each experience tuple, determining a state value for the second observation, comprising: processing the first observation using a policy neural network to generate an action score for each action in a set of possible actions; sampling multiple actions from the set of possible actions in accordance with the action scores; processing the second observation using a Q neural network to generate a Q value for each sampled action; and determining the state value for the second observation; and determining an update to current values of the Q neural network parameters using the state values.
    Type: Application
    Filed: July 27, 2021
    Publication date: July 6, 2023
    Inventors: Rae Chan Jeong, Jost Tobias Springenberg, Jacqueline Ok-chan Kay, Daniel Hai Huan Zheng, Alexandre Galashov, Nicolas Manfred Otto Heess, Francesco Nori
  • Publication number: 20230023189
    Abstract: An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.
    Type: Application
    Filed: October 7, 2022
    Publication date: January 26, 2023
    Inventors: Olivier Pietquin, Martin Riedmiller, Wang Fumin, Bilal Piot, Mel Vecerik, Todd Andrew Hester, Thomas Rothoerl, Thomas Lampe, Nicolas Manfred Otto Heess, Jonathan Karl Scholz
  • Patent number: 11534911
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 27, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess
  • Publication number: 20220366245
    Abstract: A reinforcement learning method and system that selects actions to be performed by a reinforcement learning agent interacting with an environment. A causal model is implemented by a hindsight model neural network and trained using hindsight i.e. using future environment state trajectories. As the method and system does not have access to this future information when selecting an action, the hindsight model neural network is used to train a model neural network which is conditioned on data from current observations, which learns to predict an output of the hindsight model neural network.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 17, 2022
    Inventors: Arthur Clement Guez, Fabio Viola, Theophane Guillaume Weber, Lars Buesing, Nicolas Manfred Otto Heess
  • Publication number: 20220355472
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess