Patents by Inventor Manfred Pauritsch

Manfred Pauritsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120119710
    Abstract: In one embodiment, a charging circuit for a charge accumulator comprises a first terminal (A1) for supplying a charging voltage (UC) and for connecting the charge accumulator (SC) connected to a reference potential terminal (10), a second terminal (A2) for providing a load voltage (UD) and for connecting an electrical load (D1), a control assembly (ST) which is coupled to the first and the second terminals (A1, A2) and has a signal output (A3) for providing a first charge state signal (S1) and a test output (TA) for providing at test signal (on), and a current source (I1) that is coupled to the second terminal (A2), wherein the first charge state signal (S1) is provided depending on a value of an additional voltage (U12) between the first and the second terminals (A1, A2) and depending on the test signal (on), and wherein the charging voltage (UC) is supplied depending on the first charge state signal (S1). The invention also relates to a method for charging a charge accumulator.
    Type: Application
    Filed: March 30, 2010
    Publication date: May 17, 2012
    Applicant: austriamicrosystems AG
    Inventors: Peter Trattler, Manfred Pauritsch
  • Patent number: 8120934
    Abstract: A voltage converter comprises a first, a second and a third capacitor (11, 12, 13) which are switched in series in at least one operating state, an input (1) for supplying an input voltage (VIN), an output (2) for providing an output voltage (VOUT), and a compensation circuit (5). The input (1) of the voltage converter is coupled to a capacitor from a group comprising the first, the second and the third capacitor (11, 12, 13). The output (2) of the voltage converter is coupled to a capacitor from the group comprising the first, the second and the third capacitor (11, 12, 13). The compensation circuit (5) is coupled to the first, the second and the third capacitor (11, 12, 13) and adapts a first voltage (V1) of the first capacitor (11), a second voltage (V2) of the second capacitor (12) and a third voltage (V3) of the third capacitor (13) to one another.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 21, 2012
    Assignee: austriamicrosystems AG
    Inventors: Manfred Pauritsch, Peter Trattler
  • Publication number: 20110199008
    Abstract: A current source (10), comprising a bipolar transistor (1) including a control terminal and a controlled path, a first terminal on the controlled path, to which first terminal an electrical load (D1, D2) may be connected, a second terminal on the controlled path, which second terminal may be connected to a reference potential via a resistor (4), a measuring device (2) coupled to the control terminal for measuring a control current on the control terminal, a compensation device (3) coupled to the measuring device (2) and the bipolar transistor (1) in such a manner that the control current of the bipolar transistor (1) is compensated for at the first terminal of the controlled path.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: austriamicrosystems AG
    Inventors: Peter Trattler, Stefan Wiegele, Manfred Pauritsch
  • Patent number: 7884654
    Abstract: A circuit arrangement (10) for driving an electrical load (2) comprises an input (11) for feeding a power-supply voltage (Vs) with an AC component and an output (13) for providing an output signal (Sout) for driving a connectable electrical load (2). The circuit arrangement (10) further comprises a frequency processing circuit (20) for proving a reference frequency (f1) as a function of the AC component, and a demodulator (60) with a first input (61) for feeding the reference frequency (f1), with a second input (62) that is coupled to the input (11) of the circuit arrangement (10), and with an output (63) that is coupled to the output (13) of the circuit arrangement (10).
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: February 8, 2011
    Assignee: Austriamicrosystems AG
    Inventors: Manfred Pauritsch, Peter Trattler
  • Publication number: 20100315442
    Abstract: A circuit arrangement for controlling a segmented LED backlight in particular, comprises a generator (50) with a first input (10) to be supplied with a synchronizing signal (SYNC) that comprises image frequency information and/or line frequency information of a display unit, a second input (20) to be supplied with a data signal (DATA) that comprises image information of the display unit, and with an output (30) for providing a modulated signal (MOD).
    Type: Application
    Filed: July 10, 2008
    Publication date: December 16, 2010
    Applicant: austriamicrosystems AG
    Inventor: Manfred Pauritsch
  • Patent number: 7768216
    Abstract: A control circuit for controlling light emitting diodes comprises a switch for turning on or off a string of light emitting diodes. A combiner generates a control signal from a data signal and a noise signal. A sigma delta modulator receives the control signal and a clock signal with a clock period and generates a switching signal for controlling the switch.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: August 3, 2010
    Assignee: Austriamicrosystems AG
    Inventor: Manfred Pauritsch
  • Publication number: 20100181973
    Abstract: A voltage converter comprises a first, a second and a third capacitor (11, 12, 13) which are switched in series in at least one operating state, an input (1) for supplying an input voltage (VIN), an output (2) for providing an output voltage (VOUT), and a compensation circuit (5). The input (1) of the voltage converter is coupled to a capacitor from a group comprising the first, the second and the third capacitor (11, 12, 13). The output (2) of the voltage converter is coupled to a capacitor from the group comprising the first, the second and the third capacitor (11, 12, 13). The compensation circuit (5) is coupled to the first, the second and the third capacitor (11, 12, 13) and adapts a first voltage (V1) of the first capacitor (11), a second voltage (V2) of the second capacitor (12) and a third voltage (V3) of the third capacitor (13) to one another.
    Type: Application
    Filed: March 25, 2008
    Publication date: July 22, 2010
    Applicant: austriamicrosystems AG
    Inventors: Manfred Pauritsch, Peter Trattler
  • Publication number: 20090302769
    Abstract: A circuit arrangement for controlling at least one light source comprises a photodetector (2), a sampling circuit (6) for selectively sampling a photodetector signal (lin2) generated by the photodetector (2) as a function of a first and a second light source (10, 12), and a control unit (5), which is coupled on the input side to the sampling circuit (6). The circuit arrangement further comprises a first power-supply source (7), which is coupled to the control unit (5) and is designed for controlling at least one parameter of a first light source (12), and at least one second power-supply source (11), which is coupled to the control unit (5) and is designed for controlling at least one parameter of a second light source (12). The circuit arrangement is suitable, for example, for RGB lighting.
    Type: Application
    Filed: May 4, 2007
    Publication date: December 10, 2009
    Inventors: Peter Trattler, Manfred Pauritsch
  • Publication number: 20090243510
    Abstract: A circuit arrangement (10) for driving an electrical load (2) comprises an input (11) for feeding a power-supply voltage (Vs) with an AC component and an output (13) for providing an output signal (Sout) for driving a connectable electrical load (2). The circuit arrangement (10) further comprises a frequency processing circuit (20) for providing a reference frequency (f1) as a function of the AC component, and a demodulator (60) with a first input (61) for feeding the reference frequency (f1), with a second input (62) that is coupled to the input (11) of the circuit arrangement (10), and with an output (63) that is coupled to the output (13) of the circuit arrangement (10).
    Type: Application
    Filed: January 12, 2007
    Publication date: October 1, 2009
    Applicant: AUSTRIAMICROSYSTEMS AG
    Inventors: Manfred Pauritsch, Peter Trattler
  • Publication number: 20090167260
    Abstract: A power supply arrangement is specified in which a capacitor with a low internal resistance, in particular a supercap (3), is connected via a means for charging (4) to an input (1) and via a load current regulator (9) to a connecting means (7) for an electrical load (8). Together with a feedback path, a control loop is formed for the load current through the electrical load (8). It is therefore possible to allow flash operation in applications such as mobile telephones with rechargeable batteries with a high internal resistance, with provision for high energy utilization from the capacitor, with controlled discharging with a regulated current.
    Type: Application
    Filed: June 21, 2006
    Publication date: July 2, 2009
    Inventors: Manfred Pauritsch, Peter Trattler
  • Publication number: 20080007497
    Abstract: A control circuit for controlling light emitting diodes comprises a switch for turning on or off a string of light emitting diodes. A combiner generates a control signal from a data signal and a noise signal. A sigma delta modulator receives the control signal and a clock signal with a clock period and generates a switching signal for controlling the switch.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 10, 2008
    Inventor: Manfred Pauritsch