Patents by Inventor Manfred Reiche

Manfred Reiche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9147998
    Abstract: A light emitting semiconductor device according the invention includes an SOI substrate, a collector and an injector. The SOI substrate includes a carrier layer, a buried oxide layer on the carrier layer, and a doped silicon layer structure with a conductivity type. The doped silicon layer structure with the conductivity type includes at least two silicon- or silicon germanium layers arranged adjacent to one another, wherein a dislocation network is configured in their interface portions at which dislocation network a radiative charge carrier combination with a light energy is provided, which light energy is smaller than a band gap energy of the silicon- or silicon germanium layers. The collector is formed as a pn-junction in a portion between the dislocation network and a surface of the silicon layer structure that is oriented away from the carrier layer, and wherein the injector is configured as a metal insulator semiconductor diode.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: September 29, 2015
    Assignee: IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS
    Inventors: Martin Kittler, Tzanimir Arguirov, Manfred Reiche
  • Patent number: 8809667
    Abstract: A thermoelectric semiconductor component, comprising an electrically insulating substrate surface and a plurality of spaced-apart, alternating p-type (4) and n-type semiconductor structural elements (5) which are disposed on said surface and which are connected to each other in series in an electrically conductive manner alternatingly at two opposite ends of the respective semiconductor structural elements by conductive structures, in such a way that a temperature difference (2?T) between the opposite ends produces an electrical voltage between the conductive structures or that a voltage difference between the conductive structures (7, 9; 13, 15) produces a temperature difference (2?T) between the opposite ends, characterized in that the semiconductor structural elements have a first boundary surface between a first and a second silicon layer, the lattice structures of which are considered ideal and are rotated by an angle of rotation relative to each other about a first axis perpendicular to the substrate su
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 19, 2014
    Assignee: IHP GmbH—Innovations for High Performance Microelectronics
    Inventors: Martin Kittler, Manfred Reiche
  • Publication number: 20120031450
    Abstract: A thermoelectric semiconductor component, comprising an electrically insulating substrate surface and a plurality of spaced-apart, alternating p-type (4) and n-type semiconductor structural elements (5) which are disposed on said surface and which are connected to each other in series in an electrically conductive manner alternatingly at two opposite ends of the respective semiconductor structural elements by conductive structures, in such a way that a temperature difference (2?T) between the opposite ends produces an electrical voltage between the conductive structures or that a voltage difference between the conductive structures (7, 9; 13, 15) produces a temperature difference (2?T) between the opposite ends, characterized in that the semiconductor structural elements have a first boundary surface between a first and a second silicon layer, the lattice structures of which are considered ideal and are rotated by an angle of rotation relative to each other about a first axis perpendicular to the substrate su
    Type: Application
    Filed: January 12, 2010
    Publication date: February 9, 2012
    Applicant: IHP GmbH - Innovations for High Performance Micro- electronics / Leibniz-Institut fur Innovative Mik
    Inventors: Martin Kittler, Manfred Reiche
  • Patent number: 7880189
    Abstract: A light-emitting semiconductor component comprising a substrate which has a first interface between a first and a second silicon layer, whose lattice structures which are considered as ideal are rotated relative to each other through a twist angle about a first axis perpendicular to the substrate surface and are tilted through a tilt angle about a second axis parallel to the substrate surface, in such a way that a dislocation network is present in the region of the interface, wherein the twist angle and the tilt angle are so selected that an electroluminescence spectrum of the semiconductor component has an absolute maximum of the emitted light intensity at either 1.3 micrometers light wavelength or 1.55 micrometers light wavelength.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 1, 2011
    Assignee: IHP GmbH-Innovations for High Performance Microelectronics/ Leibniz-Institut für innovative Mikroelektronik
    Inventors: Martin Kittler, Manfred Reiche, Tzanimir Arguirov, Winfried Seifert
  • Publication number: 20090321757
    Abstract: A light-emitting semiconductor component comprising a substrate which has a first interface between a first and a second silicon layer, whose lattice structures which are considered as ideal are rotated relative to each other through a twist angle about a first axis perpendicular to the substrate surface and are tilted through a tilt angle about a second axis parallel to the substrate surface, in such a way that a dislocation network is present in the region of the interface, wherein the twist angle and the tilt angle are so selected that an electroluminescence spectrum of the semiconductor component has an absolute maximum of the emitted light intensity at either 1.3 micrometers light wavelength or 1.55 micrometers light wavelength.
    Type: Application
    Filed: May 3, 2006
    Publication date: December 31, 2009
    Inventors: Martin Kittler, Manfred Reiche, Tzanimir Arguirov, Winfried Seifert
  • Publication number: 20050252787
    Abstract: The invention relates to a method for producing highly ordered pore structures in porous aluminium oxide using a nano-imprint stamp and also to a method for the manufacturing of the stamp and to the stamp itself.
    Type: Application
    Filed: February 5, 2003
    Publication date: November 17, 2005
    Inventors: Ralf Wehrspohn, Ulrich Gosele, Kornelius Nielsch, Jinsub Choi, Manfred Reiche, Marin Alexe