Patents by Inventor Manfred Schiekofer

Manfred Schiekofer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9090991
    Abstract: A system for controlling an epitaxial growth process in an epitaxial reactor. The system includes a processor for setting up a modeled output parameter value as a linear function of the actual output parameter value and a second set of thermocouple offset parameter values. The processor also determines a distance between a target output parameter value and the modeled output parameter value.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 28, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manfred Schiekofer, Pietro Foglietti, Robert Maier
  • Patent number: 8940093
    Abstract: A method of controlling an epitaxial growth process in an epitaxial reactor. The method includes optimizing the thermocouple offset parameter for a second run by setting up a modeled output parameter value as a linear function of the actual output parameter value, and a second thermocouple offset parameter value.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Manfred Schiekofer, Pietro Foglietti, Robert Maier
  • Patent number: 8932942
    Abstract: Method of forming an electrical contact between a support wafer and a surface of a top silicon layer of a silicon-on-insulator wafer. The method comprises etching a cavity into the top silicon layer and the insulator layer. A selective epitaxial step is performed for growing an epitaxial layer of silicon inside the cavity up to the surface of the top silicon layer. An electrical device comprising an electrical contact between a support wafer and a surface of a top silicon layer of a silicon-on-insulator wafer formed according to the inventive method.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: January 13, 2015
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Philipp Steinmann, Manfred Schiekofer, Michael Kraus, Thomas Scharnagl, Wolfgang Schwartz
  • Patent number: 8330223
    Abstract: A bipolar transistor has a collector having a base layer provided thereon and a shallow trench isolation structure formed therein. A base poly layer is provided on the shallow trench isolation structure. The shallow trench isolation structure defines a step such that a surface of the collector projects from the shallow trench isolation structure adjacent the collector.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Klaus Schimpf, Manfred Schiekofer, Carl David Willis, Michael Waitschull, Wolfgang Ploss
  • Patent number: 8294218
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 23, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Gerard Balster, Hiroshi Yasuda, Manfred Schiekofer
  • Patent number: 8247300
    Abstract: An integrated circuit and method of fabricating the integrated circuit is disclosed. The integrated circuit includes vertical bipolar transistors (30, 50, 60), each having a buried collector region (26?). A carbon-bearing diffusion barrier (28c) is disposed over the buried collector region (26?), to inhibit the diffusion of dopant from the buried collector region (26?) into the overlying epitaxial layer (28). The diffusion barrier (28c) may be formed by incorporating a carbon source into the epitaxial formation of the overlying layer (28), or by ion implantation. In the case of ion implantation of carbon or SiGeC, masks (52, 62) may be used to define the locations of the buried collector regions (26?) that are to receive the carbon; for example, portions underlying eventual collector contacts (33, 44c) may be masked from the carbon implant so that dopant from the buried collector region (26?) can diffuse upward to meet the contact (33).
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Manfred Schiekofer, Scott G. Balster, Gregory E. Howard, Alfred Hausler
  • Publication number: 20120035768
    Abstract: A system for controlling an epitaxial growth process in an epitaxial reactor. The system includes a processor for setting up a modeled output parameter value as a linear function of the actual output parameter value and a second set of thermocouple offset parameter values.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manfred Schiekofer, Pietro Foglietti, Robert Maier
  • Publication number: 20110049517
    Abstract: A bipolar transistor has a collector having a base layer provided thereon and a shallow trench isolation structure formed therein. A base poly layer is provided on the shallow trench isolation structure. The shallow trench isolation structure defines a step such that a surface of the collector projects from the shallow trench isolation structure adjacent the collector.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 3, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Klaus SCHIMPF, Manfred SCHIEKOFER, Carl David WILLIS, Michael WAITSCHULL, Wolfgang PLOSS
  • Publication number: 20100308416
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 9, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Badih EL-KAREH, Scott Gerard BALSTER, Hiroshi YASUDA, Manfred SCHIEKOFER
  • Publication number: 20100279481
    Abstract: An integrated circuit and method of fabricating the integrated circuit is disclosed. The integrated circuit includes vertical bipolar transistors (30, 50, 60), each having a buried collector region (26?). A carbon-bearing diffusion barrier (28c) is disposed over the buried collector region (26?), to inhibit the diffusion of dopant from the buried collector region (26?) into the overlying epitaxial layer (28). The diffusion barrier (28c) may be formed by incorporating a carbon source into the epitaxial formation of the overlying layer (28), or by ion implantation. In the case of ion implantation of carbon or SiGeC, masks (52, 62) may be used to define the locations of the buried collector regions (26?) that are to receive the carbon; for example, portions underlying eventual collector contacts (33, 44c) may be masked from the carbon implant so that dopant from the buried collector region (26?) can diffuse upward to meet the contact (33).
    Type: Application
    Filed: November 30, 2009
    Publication date: November 4, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Manfred Schiekofer, Scott G. Balster, Gregory E. Howard, Alfred Hausler
  • Publication number: 20100244184
    Abstract: Method of forming an electrical contact between a support wafer and a surface of a top silicon layer of a silicon-on-insulator wafer. The method comprises etching a cavity into the top silicon layer and the insulator layer. A selective epitaxial step is performed for growing an epitaxial layer of silicon inside the cavity up to the surface of the top silicon layer. An electrical device comprising an electrical contact between a support wafer and a surface of a top silicon layer of a silicon-on-insulator wafer formed according to the inventive method.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Philipp STEINMANN, Manfred SCHIEKOFER, Michael KRAUS, Thomas SCHARNAGL, Wolfgang SCHWARTZ
  • Patent number: 7772057
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 10, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Gerard Balster, Hiroshi Yasuda, Manfred Schiekofer
  • Publication number: 20080251007
    Abstract: A method of controlling an epitaxial growth process in an epitaxial reactor and a system for controlling an epitaxial growth process in an epitaxial reactor.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 16, 2008
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Manfred Schiekofer, Pietro Foglietti, Robert Maier
  • Patent number: 7217322
    Abstract: A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 15, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Scott Balster, Alfred Haeusler, Angelo Pinto, Manfred Schiekofer, Philipp Steinmann, Badih El-Kareh
  • Publication number: 20070057281
    Abstract: An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 15, 2007
    Inventors: Badih El-Kareh, Scott Balster, Hiroshi Yasuda, Manfred Schiekofer
  • Patent number: 7144789
    Abstract: In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: December 5, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Balster, Philipp Steinmann, Thomas Scharnagl, Manfred Schiekofer, Carl Willis
  • Publication number: 20050250289
    Abstract: An integrated circuit and method of fabricating the integrated circuit is disclosed. The integrated circuit includes vertical bipolar transistors (30, 50, 60), each having a buried collector region (26?). A carbon-bearing diffusion barrier (28c) is disposed over the buried collector region (26?), to inhibit the diffusion of dopant from the buried collector region (26?) into the overlying epitaxial layer (28). The diffusion barrier (28c) may be formed by incorporating a carbon source into the epitaxial formation of the overlying layer (28), or by ion implantation. In the case of ion implantation of carbon or SiGeC, masks (52, 62) may be used to define the locations of the buried collector regions (26?) that are to receive the carbon; for example, portions underlying eventual collector contacts (33, 44c) may be masked from the carbon implant so that dopant from the buried collector region (26?) can diffuse upward to meet the contact (33).
    Type: Application
    Filed: July 13, 2005
    Publication date: November 10, 2005
    Inventors: Jeffrey Babcock, Angelo Pinto, Manfred Schiekofer, Scott Balster, Gregory Howard, Alfred Hausler
  • Publication number: 20050118771
    Abstract: A method of producing a vertical bipolar PNP transistor is disclosed. The phosphorous profile in the base layer is controlled. Carbon that is incorporated in the base layer in the vicinity of the base-collector junction suppresses the diffusion of phosphorous deeper than implanted in a subsequent thermal step. PNP transistors with a narrow phosphorous-doped base can thus be manufactured with a cut-off frequency increased from 23 GHz to 30 GHz.
    Type: Application
    Filed: October 28, 2004
    Publication date: June 2, 2005
    Inventors: Hiroshi Yasuda, Badih El-Kareh, Scott Balster, Manfred Schiekofer
  • Publication number: 20050098093
    Abstract: A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
    Type: Application
    Filed: September 2, 2004
    Publication date: May 12, 2005
    Inventors: Jeffrey Babcock, Scott Balster, Alfred Haeusler, Angelo Pinto, Manfred Schiekofer, Philipp Steinmann, Badih El-Kareh
  • Publication number: 20050014341
    Abstract: In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
    Type: Application
    Filed: April 8, 2004
    Publication date: January 20, 2005
    Inventors: Badih El-Kareh, Scott Balster, Philipp Steinmann, Thomas Scharnagl, Manfred Schiekofer, Carl Willis