Patents by Inventor Mani Ranjbar

Mani Ranjbar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240046572
    Abstract: An example computer-implemented method for reducing a number of polygons in a polygon mesh model of an object determines one or more viewpoints, and, for each viewpoint of the one or more viewpoints, determines a respective first subset of polygons of the set of one or more polygons, the respective first subset of polygons being candidates for removal from the polygon mesh model. The method further determines a first intersection of the respective first subsets of polygons, and removes from the polygon mesh model at least some of the polygons in the first intersection. The method identifies candidates for removal from the polygon mesh model as those polygons of the set of one or more polygons which are non-visible in the computer simulation from the one or more viewpoints.
    Type: Application
    Filed: August 8, 2023
    Publication date: February 8, 2024
    Inventors: Jonathan McCully Moore, Mani Ranjbar
  • Publication number: 20240046573
    Abstract: An example computer-implemented method for reducing a number of polygons in a polygon mesh model of an object determines one or more viewpoints, and, for each viewpoint of the one or more viewpoints, determines a respective first subset of polygons of the set of one or more polygons, the respective first subset of polygons being candidates for removal from the polygon mesh model. The method further determines a first intersection of the respective first subsets of polygons, and removes from the polygon mesh model at least some of the polygons in the first intersection. The method identifies candidates for removal from the polygon mesh model as those polygons of the set of one or more polygons which are non-visible in the computer simulation from the one or more viewpoints.
    Type: Application
    Filed: August 8, 2023
    Publication date: February 8, 2024
    Inventors: Jonathan McCully Moore, Mani Ranjbar
  • Patent number: 11625612
    Abstract: The domain adaptation problem is addressed by using the predictions of a trained model over both source and target domain to retain the model with the assistance of an auxiliary model and a modified objective function. Inaccuracy in the model's predictions in the target domain is treated as noise and is reduced by using a robust learning framework during retraining, enabling unsupervised training in the target domain. Applications include object detection models, where noise in retraining is reduced by explicitly representing label noise and geometry noise in the objective function and using the ancillary model to inject information about label noise.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 11, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Arash Vahdat, Mani Ranjbar, Mehran Khodabandeh, William G. Macready, Zhengbing Bian
  • Publication number: 20220391744
    Abstract: An accelerated version of a node-weighted path distance algorithm is implemented on a microprocessor coupled to a digital processor. The algorithm calculates an embedding of a source graph into a target graph (e.g., hardware graph of a quantum processor). The digital processor causes the microprocessor to send seeds to logic blocks with a corresponding node in the target graph contained in a working embedding of a node, compute a minimum distance to neighboring logic blocks from each seeded logic block, set the distance to neighboring logic blocks as the minimum distance plus the weight of the seeded logic block, increment the accumulator value by the weight of the seeded logic block, increment the accumulator value by the distance, determine the minimum distance logic block by computing the minimum accumulated value, compute distances to the minimum distance logic block; and read distances from all logic blocks into local memory.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Kelly T.R. Boothby, Peter D. Spear, Mani Ranjbar
  • Patent number: 11481669
    Abstract: A digital processor runs a machine learning algorithm in parallel with a sampling server. The sampling sever may continuously or intermittently draw samples for the machine learning algorithm during execution of the machine learning algorithm, for example on a given problem. The sampling server may run in parallel (e.g., concurrently, overlapping, simultaneously) with a quantum processor to draw samples from the quantum processor.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 25, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jason T. Rolfe, William G. Macready, Mani Ranjbar, Mayssam Mohammad Nevisi
  • Patent number: 11410067
    Abstract: A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 9, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jason Rolfe, Dmytro Korenkevych, Mani Ranjbar, Jack R. Raymond, William G. Macready
  • Publication number: 20210289020
    Abstract: A digital processor runs a machine learning algorithm in parallel with a sampling server. The sampling sever may continuously or intermittently draw samples for the machine learning algorithm during execution of the machine learning algorithm, for example on a given problem. The sampling server may run in parallel (e.g., concurrently, overlapping, simultaneously) with a quantum processor to draw samples from the quantum processor.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 16, 2021
    Inventors: Jason T. Rolfe, William G. Macready, Mani Ranjbar, Mayssam Mohammad Nevisi
  • Publication number: 20210019647
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Patent number: 10817796
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: October 27, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Publication number: 20200257984
    Abstract: The domain adaptation problem is addressed by using the predictions of a trained model over both source and target domain to retain the model with the assistance of an auxiliary model and a modified objective function. Inaccuracy in the model's predictions in the target domain is treated as noise and is reduced by using a robust learning framework during retraining, enabling unsupervised training in the target domain. Applications include object detection models, where noise in retraining is reduced by explicitly representing label noise and geometry noise in the objective function and using the ancillary model to inject information about label noise.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 13, 2020
    Inventors: Arash Vahdat, Mani Ranjbar, Mehran Khodabandeh, William G. Macready, Zhengbing Bian
  • Publication number: 20200210876
    Abstract: A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
    Type: Application
    Filed: August 18, 2016
    Publication date: July 2, 2020
    Inventors: Jason Rolfe, Dmytro Korenkevych, Mani Ranjbar, Jack R. Raymond, William G. Macready
  • Patent number: 10467543
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: November 5, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Patent number: 10275422
    Abstract: Methods and systems represent constraint as an Ising model penalty function and a penalty gap associated therewith, the penalty gap separating a set of feasible solutions to the constraint from a set of infeasible solutions to the constraint; and determines the Ising model penalty function subject to the bounds on the programmable parameters imposed by the hardware limitations of the second processor, where the penalty gap exceeds a predetermined threshold greater than zero. Such may be employed to find quantum binary optimization problems and associated gap values employing a variety of techniques.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 30, 2019
    Assignee: D-WAVE SYSTEMS, INC.
    Inventors: Robert Israel, William G. Macready, Zhengbing Bian, Fabian Chudak, Mani Ranjbar
  • Patent number: 9881256
    Abstract: Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 30, 2018
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Firas Hamze, Andrew Douglas King, Jack Raymond, Aidan Patrick Roy, Robert Israel, Evgeny Andriyash, Catherine McGeoch, Mani Ranjbar
  • Publication number: 20170255871
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 7, 2017
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Publication number: 20170255872
    Abstract: Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 7, 2017
    Inventors: Firas Hamze, Andrew Douglas King, Jack Raymond, Aidan Patrick Roy, Robert Israel, Evgeny Andriyash, Catherine McGeoch, Mani Ranjbar
  • Patent number: 9424526
    Abstract: Computational techniques for mapping a continuous variable objective function into a discrete variable objective function problem that facilitate determining a solution of the problem via a quantum processor are described. The modified objective function is solved by minimizing the cost of the mapping via an iterative search algorithm.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 23, 2016
    Assignee: D-WAVE SYSTEMS INC.
    Inventor: Mani Ranjbar
  • Publication number: 20160042294
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 11, 2016
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Patent number: 9218567
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 22, 2015
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Publication number: 20150205759
    Abstract: Methods and systems represent constraint as an Ising model penalty function and a penalty gap associated therewith, the penalty gap separating a set of feasible solutions to the constraint from a set of infeasible solutions to the constraint; and determines the Ising model penalty function subject to the bounds on the programmable parameters imposed by the hardware limitations of the second processor, where the penalty gap exceeds a predetermined threshold greater than zero. Such may be employed to find quantum binary optimization problems and associated gap values employing a variety of techniques.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 23, 2015
    Inventors: Robert Israel, William G. Macready, Zhengbing Bian, Fabian Chudak, Mani Ranjbar