Patents by Inventor Manish Giri

Manish Giri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091772
    Abstract: A microfluidic device and a method for flow control of cells or particles in a microfluidic channel are disclosed. The microfluidic device may include a substrate having an outlet channel. The microfluidic device may also include a microfluidic channel arranged on the substrate such that an outlet of the microfluidic channel is positioned above the outlet channel. The microfluidic device may further include a set of piezoelectric actuators arranged above the outlet channel and adjacent to the outlet, the set of piezoelectric actuators configured to eject a portion of a fluid out of the microfluidic channel via the outlet.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 21, 2024
    Applicant: TDK Corporation
    Inventor: Manish Giri
  • Patent number: 11933704
    Abstract: A digital dispense system and methods for preparing samples for analysis. The digital dispense system includes a fluid droplet ejection system housed in a housing unit. The fluid droplet ejection system contains a fluid droplet ejection head and fluid cartridge containing one or more fluids to be dispensed. A cartridge translation mechanism is provided for moving the fluid droplet ejection head and fluid cartridge back and forth over a sample holder in an x direction. A sample tray translation mechanism moves a sample tray back and forth beneath the fluid droplet ejection head and fluid cartridge in a y direction orthogonal to the x direction.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: March 19, 2024
    Assignee: Funai Electric Co., Ltd.
    Inventors: James D. Anderson, Jr., John Glenn Edelen, Manish Giri, Michael A. Marra, III, Sam Norasak
  • Patent number: 11935069
    Abstract: Aspects of the present disclosure relate to proactive intervention in a software application. Embodiments include selecting, by a proactive intervention system related to an application, an event of a plurality of events related to use of the application for processing based on event priorities associated with the plurality of events. Embodiments further include receiving, by the proactive intervention system, contextual information related to the event. Embodiments further include determining, by the proactive intervention system, a proactive intervention based on the event and the contextual information. Embodiments further include determining, by the proactive intervention system, that the proactive intervention can presently be provided based on intervention availability data. Embodiments further include providing, by the proactive intervention system, the proactive intervention via a user interface associated with the application.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: March 19, 2024
    Assignee: Inuit, Inc.
    Inventors: Neha Giri, Hemanth Nellitheertha, Bhargava Narayana, Manish Jain, Divya Kumar, Arun Kumar A
  • Publication number: 20230241604
    Abstract: Various embodiments described herein include methods and devices for the evaluation of sub-cellular and molecular structures of cells and particles. In one aspect, a microfluidic device includes: (i) a sensor positioned adjacent to a microfluidic channel for detecting particles flowing through the microfluidic channel and (ii) a transmission line positioned adjacent to the sensor for receiving electromagnetic signals from the sensor.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: TDK Corporation
    Inventors: Manish Giri, Rakesh Sethi, Vadim Piskun
  • Publication number: 20230241611
    Abstract: A microfluidic device and a method for sensing and sorting of cells or particles in a microfluidic channel are disclosed. The microfluidic device may include a substrate with a microfluidic channel having an inlet, the microfluidic channel being coupled with two or more output channels; one or more sensors located adjacent to a first region of the microfluidic channel for sensing respective particles flown through the microfluidic channel; and a first piezoelectric actuator located adjacent to a second region of the microfluidic channel downstream from the first region for deflecting the respective particles flowing through the microfluidic channel to respective output channels of the two or more output channels based on signals from the one or more sensors.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: TDK Corporation
    Inventors: Manish Giri, Rakesh Sethi, Vadim Piskun
  • Publication number: 20230241605
    Abstract: A microfluidic device and a method for flow control of cells or particles in a microfluidic channel are disclosed. The microfluidic device may include a substrate with a microfluidic channel having at least one outlet; a first array of piezoelectric actuators located adjacent to the outlet for ejecting a portion of a fluid in the microfluidic channel; and one or more pairs of electrodes for charging particles (in the fluid) flowing through the microfluidic channel so that the particles can be manipulated with an electrical field.
    Type: Application
    Filed: October 21, 2022
    Publication date: August 3, 2023
    Applicant: TDK U.S.A. Corporation
    Inventors: Manish Giri, Rakesh Sethi, Vadim Piskun
  • Publication number: 20230241610
    Abstract: A microfluidic device and a method for flow control of cells or particles in a microfluidic channel are disclosed. The microfluidic device may include a substrate with a microfluidic channel having at least one outlet; a first array of piezoelectric actuators located adjacent to the outlet for ejecting a portion of a fluid in the microfluidic channel; and one or more pairs of electrodes for charging particles (in the fluid) flowing through the microfluidic channel so that the particles can be manipulated with an electrical field.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: TDK U.S.A. Corporation
    Inventors: Manish Giri, Rakesh Sethi, Vadim Piskun
  • Patent number: 11698332
    Abstract: Examples herein provide a device. The device includes a sample delivery component, which includes: a reagent chamber to contain at least one reagent; a sample chamber to contain a fluid sample; and a delivery channel extending from the reagent chamber and in fluid communication with the sample chamber and an output port, wherein the delivery channel is conducive mixing the at least one reagent and the fluid sample to form a mixture before the mixture reaches the output port and be discharged therefrom. The device includes a testing cassette detachable from the delivery component, which includes: an input port in fluid communication with a microfluidic reservoir, the input port to receive the discharged fluid sample from the output port; and a micro-fabricated integrated sensor in a microfluidic channel extending from the microfluidic reservoir.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 11, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert Moline, Manish Giri, Chantelle Domingue
  • Publication number: 20220397496
    Abstract: A digital dispense system and methods for preparing samples for analysis. The digital dispense system includes a fluid droplet ejection system housed in a housing unit. The fluid droplet ejection system contains a fluid droplet ejection head and fluid cartridge containing one or more fluids to be dispensed. A cartridge translation mechanism is provided for moving the fluid droplet ejection head and fluid cartridge back and forth over a sample holder in an x direction. A sample tray translation mechanism moves a sample tray back and forth beneath the fluid droplet ejection head and fluid cartridge in a y direction orthogonal to the x direction.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 15, 2022
    Applicant: Funai Electric Co., Ltd.
    Inventors: James D. ANDERSON, JR., John Glenn Edelen, Manish GIRI, Michael A. Marra, III, Sam NORASAK
  • Patent number: 11486839
    Abstract: A diagnostic cassette includes a substrate, to physically and electrically connect the product to a computing device, a reservoir defined within the substrate to receive a fluid sample for processing by the diagnostic cassette, a reagent to react with the fluid sample deposited in the reservoir to form a solution to enable processing of the fluid sample by the diagnostic cassette, a channel to direct the solution, and a sensor to measure a number of parameters of the solution passing through the channel. A method for measuring microfluidic samples includes receiving, in a reservoir, a fluid sample to be measured, combining the fluid sample with a reagent to create a solution, moving the solution through a channel, and measuring the solution, using sensors, as the solution passes through the channel.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: November 1, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nicholas Matthew Cooper McGuinness, Manish Giri, Chantelle Elizabeth Domingue, Melinda M. Valencia, Jeremy Sells
  • Patent number: 11474007
    Abstract: A digital dispense system and methods for preparing samples for analysis. The digital dispense system includes a fluid droplet ejection system housed in a housing unit. The fluid droplet ejection system contains a fluid droplet ejection head and fluid cartridge containing one or more fluids to be dispensed. A cartridge translation mechanism is provided for moving the fluid droplet ejection head and fluid cartridge back and forth over a sample holder in an x direction. A sample tray translation mechanism moves a sample tray back and forth beneath the fluid droplet ejection head and fluid cartridge in a y direction orthogonal to the x direction.
    Type: Grant
    Filed: September 1, 2019
    Date of Patent: October 18, 2022
    Inventors: James D. Anderson, Jr., John Glenn Edelen, Manish Giri, Michael A. Marra, III, Sam Norasak
  • Publication number: 20220241525
    Abstract: A pharmaceutical drug delivery device and method of using the pharmaceutical drug delivery device. The pharmaceutical drug delivery device includes a cartridge body; a fluid outlet nozzle attached to the cartridge body; and a fluid jet ejection cartridge disposed in the cartridge body, wherein the cartridge contains a liquid pharmaceutical drug and a fluid ejection head containing a plurality of fluid ejection nozzles and associated fluid ejectors. A processor disposed on a logic board or fluid ejection head is provided for executing a control algorithm to control the ejection head to modify plume characteristics of fluid ejected from the ejection head by controlling one or more of fluid jet firing frequency, burst length, and fluid jet firing burst delay.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Applicant: Funai Electric Co., Ltd.
    Inventors: Bruce D. GIBSON, Manish GIRI, Brian T. JONES, Michael A. MARRA, III, Robert W. Milgate, III
  • Patent number: 11369956
    Abstract: A system may comprise a voltage upconverter, a universal serial bus (USB) connector to receive an input voltage from a USB port on a computing device, and a microfluidic diagnostic chip communication link to electrically couple the voltage upconverter to a microfluidic diagnostic chip wherein the voltage upconverter is to convert the input voltage to be received by the USB connector to an output voltage sufficient to drive a pump on the microfluidic diagnostic chip. A diagnostic system may comprise a microfluidic diagnostic chip comprising a pump and a voltage upconverter to receive an input voltage from a universal serial bus (USB) port of a computing device and to convert the input voltage into an output voltage that powers activation of the pump.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 28, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Manish Giri, Melinda M. Valencia, Matthew David Smith, Sirena Lu, Joshua M Yu, Sadig Bengali
  • Patent number: 11366051
    Abstract: A device including a microfluidic channel structure formed on a substrate and including a first channel and a fluid actuator within the microfluidic channel structure. A sense region within the first channel is to receive a fluid flow of target biologic particles for counting in a single file pattern, with the sense region having a volume on a same order of magnitude as a volume of a single one of the target biologic particles.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 21, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeremy Sells, Nick McGuinness, Chantelle Domingue, Manish Giri
  • Patent number: 11203017
    Abstract: According to an example, a microfluidic apparatus may include a channel, a foyer, in which the foyer is in fluid communication with the channel and in which the channel has a smaller width than the foyer, a sensor to sense a property of a fluid passing through the channel, a nozzle in fluid communication with the foyer, and an actuator positioned in line with the nozzle. The microfluidic apparatus may also include a controller to determine whether the sensed property of the fluid meets a predetermined condition and to perform a predefined action in response to the sensed property of the fluid meeting the predetermined condition.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 21, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey A Nielsen, Manish Giri, Chantelle Domingue, Kenneth Ward, Christie Dudenhoefer, Matthew David Smith, Joshua M. Yu, Diane R. Hammerstad, Hilary Ely
  • Patent number: 11179720
    Abstract: The present disclosure is drawn to microfluidic chips. The microfluidic chips can include an inflexible material having an elastic modulus of 0.1 gigapascals (GPa) to 450 GPa. A microfluidic channel can be formed within the inflexible material and can connect an inlet and an outlet. A working electrode can be associated with the microfluidic channel and can have a surface area of 1 ?m2 to 60,000 ?m2 within the microfluidic channel. A bubble support structure can also be formed within the microfluidic channel such that the working electrode is positioned to electrolytically generate a bubble that becomes associated with the bubble support structure.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: November 23, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Manish Giri, Chantelle Domingue, Tod Woodford, Matthew David Smith, Rachel M. White, Joshua M. Yu, Hilary Ely, Jeremy Sells
  • Patent number: 11112400
    Abstract: Examples herein provide a method. The method includes applying an electrical potential difference over a blood sample in a testing cassette of a microfluidic device, the cassette including a microfluidic channel through which the blood sample flows. The method includes measuring, over a duration of time, an electrical signal passing through the blood sample as the blood sample flows from a first end and coagulates at a second end of the microfluidic channel to obtain a measurement function as a function of time. The method also includes correlating the measurement function to a characteristic of the blood sample.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: September 7, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shameed Sait M A, Rachel M. White, Chantelle Domingue, Manish Giri
  • Patent number: 11097268
    Abstract: A device includes a microfluidic channel structure on a substrate with a first fluid actuator and a second fluid actuator within the microfluidic channel structure. One of the fluid actuators is selectively employable to at least partially reverse fluid flow within at least a portion of the microfluidic channel structure in response to a blockage or to prevent a blockage.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: August 24, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeremy Sells, Nick McGuinness, Chantelle Domingue, Manish Giri
  • Patent number: 11097272
    Abstract: According to an example, a microfluidic apparatus may include a fluid slot and a foyer that is in fluid communication with the fluid slot via a channel having a relatively smaller width than the foyer. The microfluidic apparatus may also include an electrical sensor to measure a change in an electrical field caused by a particle of interest in a fluid passing through the channel from the fluid slot to the foyer, an actuator to apply pressure onto fluid contained in the foyer, and a controller to receive the measured change in the electrical field from the electrical sensor, determine, from the received change in the electrical field, an electrical signature of the particle of interest, and control the actuator to control movement of the particle of interest based upon the determined electrical signature of the particle of interest.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 24, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chantelle Domingue, Tod Woodford, Manish Giri, Matthew David Smith, George H Corrigan, III, Masoud Zavarehi, Joshua M. Yu
  • Patent number: 11035814
    Abstract: A method of microfluidic detection can include detecting, using an impedance sensor, an impedance of a fluid to indicate whether a threshold amount of fluid has been received in a reservoir of a microfluidic chip. The method can include initiating a test performed by the microfluidic chip on the received fluid when the threshold amount of fluid has been received.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 15, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeremy Sells, Chantelle E. Domingue, Manish Giri, Melinda M. Valencia