Patents by Inventor Manohar Panjabi

Manohar Panjabi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060015100
    Abstract: Spine stabilization devices, systems and methods are provided in which torsion member extends between first and second stabilization devices that are oppositely positioned relative to the vertebrae. The torsion member includes a (i) a first segment that is substantially co-planar with and perpendicular to the axis of at least one of the stabilization devices; (ii) a second segment that extends from the first segment and that is angularly and upwardly oriented relative to the first segment; (iii) a third segment that extends from the second segment, is substantially perpendicular to at least one of the stabilization devices, and is oriented in a plane that is elevated with respect to, but substantially parallel to, the plane of at least one of the stabilization devices, (iv) a fourth segment that extends from the third segment and that is a substantial mirror image of the second segment; and (v) a fifth segment that extends from the fourth segment and that is a substantial mirror image of the first segment..
    Type: Application
    Filed: June 23, 2005
    Publication date: January 19, 2006
    Inventors: Manohar Panjabi, Jens Timm
  • Publication number: 20050288670
    Abstract: Spine stabilization devices, systems and methods are provided in which a single resilient member or spring is disposed on an elongate element that spans two attachment members attached to different spinal vertebrae. The elongate element passes through at least one of the two attachment members, permitting relative motion therebetween, and terminates in a stop or abutment. A second resilient member is disposed on the elongate element on an opposite side of the sliding attachment member, e.g., in an overhanging orientation. The two resilient members are capable of applying mutually opposing urging forces, and a compressive preload can be applied to one or both of the resilient members.
    Type: Application
    Filed: June 23, 2005
    Publication date: December 29, 2005
    Inventors: Manohar Panjabi, Jens Timm
  • Publication number: 20050245930
    Abstract: A dynamic spine stabilization device is provided that includes at least one force imparting member, e.g., a spring. The force imparting member is adapted to deliver a force of between about 150 lb/inch and 450 lbs/inch, and restrict the relative travel distance between said first and second pedicles to a distance of between about 1.5 mm and 5 mm. The spinal stabilization devices also have a minimal impact on the location of the center of rotation for the spinal segment being treated. By providing resistance in the noted range and restricting the travel distance to the noted range, it has been found that the stabilization device provides a desired level of stabilization, as reflected by range of motion values that closely approximate pre-injury range of motion levels.
    Type: Application
    Filed: May 19, 2005
    Publication date: November 3, 2005
    Inventors: Jens Timm, Manohar Panjabi
  • Publication number: 20050222569
    Abstract: A dynamic spine stabilizer moves under the control of spinal motion providing increased mechanical support within a central zone corresponding substantially to the neutral zone of the injured spine. The dynamic spine stabilizer includes a support assembly and a resistance assembly associated with the support assembly. The resistance assembly generates greater increase in mechanical force during movement within the central zone and lesser increase in mechanical force during movement beyond the central zone. A method for using the stabilizer is also disclosed.
    Type: Application
    Filed: March 24, 2005
    Publication date: October 6, 2005
    Inventor: Manohar Panjabi
  • Publication number: 20050182401
    Abstract: Spinal stabilization devices, systems and methods are provided that include at least one pedicle screw and at least one mechanism that supports three degrees of rotational freedom relative to the pedicle screw. The mechanism may include a universal joint mechanism or a ball and socket mechanism. In the case of the ball and socket mechanism, at least one spherical element is mounted with respect to the at least one pedicle screw and a socket member cooperates with the spherical element. The spherical element and the socket member cooperate to define a dynamic junction that allows the socket member to move relative to the ball element while remaining engaged therewith. The dynamic junction is advantageously incorporated into a spinal stabilization system that includes additional pedicle screw(s), spherical element(s) and socket member(s). The spinal stabilization system may incorporate dynamic stabilizing member(s) to so as to provide clinically efficacious results.
    Type: Application
    Filed: December 31, 2004
    Publication date: August 18, 2005
    Inventors: Jens Timm, Jeffrey White, Carmen Walters, Manohar Panjabi
  • Publication number: 20050171543
    Abstract: A system and method for effecting multi-level spine stabilization is provided. The system includes a plurality of pedicle screws which are joined relative to each other by elongated members, e.g., rods. At least one of the rods includes a dynamic stabilizing member. The pedicle screw junctions are dynamic, i.e., free relative movement of a socket member is permitted relative to a fixed spherical element. Placement of the spherical element may be facilitated using a guidewire system that includes a guidewire and a tapered guide member. A spine stabilization assembly is also provided that includes an attachment member that includes an opening. At least one spherical element that includes a rod-receiving channel is movably mounted within the opening with three degrees of rotational freedom. The spherical element generally defines an elliptical rod-receiving channel that is deformable to a circular opening to firmly engage a rod positioned therein.
    Type: Application
    Filed: December 31, 2004
    Publication date: August 4, 2005
    Inventors: Jens Timm, Bryan Hildebrand, Carmen Walters, Manohar Panjabi, Larry Khoo