Patents by Inventor Manoj Meda

Manoj Meda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250128983
    Abstract: Described herein is a glass article comprising a glass substrate having a major surface and an opaque layer disposed on the major surface. The opaque layer comprises a photocurable ink that comprises at least 10 wt % of a pigment. The opaque layer comprises a thickness of less than or equal to 25 ?m and an optical density of greater than or equal to 4.0. After curing via exposure to curing light from an ultraviolet light (“UV”) light emitting diode (“LED”), the opaque layer exhibits: (a) a pencil hardness of greater than or equal to 3H when measured according to ASTM 3363, and (b) an adhesion to the glass substrate of greater than or equal to 4B after being subjected to a temperature of 85° C. at 95% relative humidity for a period of at least 500 hours, when tested according to ASTM 3359.
    Type: Application
    Filed: January 13, 2023
    Publication date: April 24, 2025
    Inventors: Carlos Francis Alonzo, Aaron Bradley Gleason, Mandakini Kanungo, Manoj Meda, Timothy Edward Myers
  • Publication number: 20250019556
    Abstract: An ultraviolet ink composition includes from 25 wt % to 50 wt % of a pigment dispersion, from greater than 0 wt % to 10 wt % of a photoinitiator package; from 10 wt % to 42 wt % of a reactive diluent; from 10 wt % to 20 wt % of a multifunctional monomer; and from 0 wt % to 25 wt % of a difunctional monomer. An ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass and from 90 wt % to 98 wt % of a solvent configured to promote bonding of the adhesion promoter to the glass. Another ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass, from greater than 0 wt % to 10 wt % of a photoinitiator package; and from 30 wt % to 45 wt % of a monofunctional monomer.
    Type: Application
    Filed: July 9, 2024
    Publication date: January 16, 2025
    Inventors: Carlos Francis Alonzo, Donald Martin Bott, Aaron Bradley Gleason, Mandakini Kanungo, Steven Isaac Massey, Dean Joseph Mastropietro, Manoj Meda, Timothy Edward Myers
  • Patent number: 12186992
    Abstract: A method of operating a three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The method identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the method can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: January 7, 2025
    Assignee: Additive Technologies LLC
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal
  • Publication number: 20240383210
    Abstract: A method of operating a three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The method identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the method can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal
  • Publication number: 20240058840
    Abstract: A coated article for use as a display screen for automotive displays includes a substrate that is a glass or a glass ceramic and has at least one surface, and an ETC coating bonded to the surface of the substrate by inkjet printing. A method for applying the ETC coating onto the substrate to produce the coated articles includes providing the substrate having the surface, where the substrate is a glass substrate or a glass ceramic substrate. The method further includes preparing an ETC coating composition that includes a polymer and a solvent. The viscosity of the ETC coating composition is from 2 cP to 30 cP. The method further includes inkjet printing the ETC coating composition onto the surface of the substrate and curing the ETC coating composition to produce the ETC coating. Inkjet printing increases the durability and uniformity of the ETC coating.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 22, 2024
    Inventors: Philip Simon Brown, Brandy Wright Fuller, Charles Morrison Gardiner, Mandakini Kanungo, Carlo Anthony Kosik Williams, Manoj Meda
  • Publication number: 20230294364
    Abstract: A method of operating a three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The method identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the method can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal
  • Patent number: 11731366
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The apparatus identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the apparatus can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 22, 2023
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal
  • Publication number: 20220032550
    Abstract: A three-dimensional (3D) metal object manufacturing apparatus selects operational parameters for operation of the printer to form conductive metal traces on substrates with dimensions within appropriate tolerances and with sufficient conductive material to carry electrical currents without burning up or becoming too hot. The apparatus identifies the material of the substrate and the bulk metal being melted for ejection and uses this identification data to select the operational parameters. Thus, the apparatus can form conductive traces and circuits on a wide range of substrate materials including polymeric substrates, semiconductor materials, oxide layers on semiconductor materials, glass, and other crystalline materials.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 3, 2022
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Denis Cormier, Manoj Meda, Dinesh Krishna Kumar Jayabal