Patents by Inventor Manouchehr Goharlaee

Manouchehr Goharlaee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250000559
    Abstract: An orthopedic surgical instrument or impactor arranged and configured to convert rotational motion of a motor into linear (e.g., reciprocating) motion of an internal hammer to drive an orthopedic implant (e.g., an acetabular cup, a femoral hip implant, an intramedullary nail, etc.) and/or a surgical tool (e.g., a broach, a rasp, a cutting tool, etc.) into a patient's bone. In addition, and/or alternatively, the orthopedic surgical instrument may be reversed to assist with removal of the orthopedical implant and/or surgical tool. In some examples, the orthopedic surgical instrument includes a swashplate and a wobble shaft to convert the rotational motion into linear motion. In addition, and/or alternatively, the orthopedic surgical instrument may be arranged and configured with multiple modes of operation to enable a user to selectively, and independently, adjust the impact energy, frequency, etc.
    Type: Application
    Filed: October 7, 2022
    Publication date: January 2, 2025
    Applicants: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific PTE. Limited
    Inventors: Justin Taber, Daniel Santos, Noah Christie, Manouchehr Goharlaee, Bhaktprakash Patel
  • Publication number: 20240197429
    Abstract: Various torque-limiting surgical driver devices, systems, and methods are disclosed. The surgical driver can include a body, a motor that is configured to rotate a drill bit engaged with the surgical driver, and a processor configured to control operation of the surgical driver. The surgical driver can have torque-limiting functionality, such as by monitoring the amount of torque applied to a drill bit and reducing or stopping rotation of the drill bit when certain torque-limiting criteria are met.
    Type: Application
    Filed: December 12, 2023
    Publication date: June 20, 2024
    Inventors: Alexander M. Pfotenhauer, Manouchehr Goharlaee
  • Patent number: 11882991
    Abstract: Various torque-limiting surgical driver devices, systems, and methods are disclosed. The surgical driver can include a body, a motor that is configured to rotate a drill bit engaged with the surgical driver, and a processor configured to control operation of the surgical driver. The surgical driver can have torque-limiting functionality, such as by monitoring the amount of torque applied to a drill bit and reducing or stopping rotation of the drill bit when certain torque-limiting criteria are met.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: January 30, 2024
    Assignee: Pro-Dex, Inc.
    Inventors: Alexander M. Pfotenhauer, Manouchehr Goharlaee
  • Publication number: 20220202521
    Abstract: Various torque-limiting surgical driver devices, systems, and methods are disclosed. The surgical driver can include a body, a motor that is configured to rotate a drill bit engaged with the surgical driver, and a processor configured to control operation of the surgical driver. The surgical driver can have torque-limiting functionality, such as by monitoring the amount of torque applied to a drill bit and reducing or stopping rotation of the drill bit when certain torque-limiting criteria are met.
    Type: Application
    Filed: July 9, 2021
    Publication date: June 30, 2022
    Inventors: Alexander M. Pfotenhauer, Manouchehr Goharlaee
  • Patent number: 11090128
    Abstract: Various torque-limiting surgical driver devices, systems, and methods are disclosed. The surgical driver can include a body, a motor that is configured to rotate a drill bit engaged with the surgical driver, and a processor configured to control operation of the surgical driver. The surgical driver can have torque-limiting functionality, such as by monitoring the amount of torque applied to a drill bit and reducing or stopping rotation of the drill bit when certain torque-limiting criteria are met.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: August 17, 2021
    Assignee: Pro-Dex, Inc.
    Inventors: Alexander M. Pfotenhauer, Manouchehr Goharlaee
  • Publication number: 20200054410
    Abstract: Various torque-limiting surgical driver devices, systems, and methods are disclosed. The surgical driver can include a body, a motor that is configured to rotate a drill bit engaged with the surgical driver, and a processor configured to control operation of the surgical driver. The surgical driver can have torque-limiting functionality, such as by monitoring the amount of torque applied to a drill bit and reducing or stopping rotation of the drill bit when certain torque-limiting criteria are met.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 20, 2020
    Inventors: Alexander M. Pfotenhauer, Manouchehr Goharlaee
  • Patent number: 10285598
    Abstract: Improved apparatus and methods for non-invasively assessing one or more parameters associated with systems such as fluidic circulating systems (e.g., the circulatory system of a living organism). In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using dynamically applied dither perturbations (e.g., modulation) on the various axes associated with the vessel. In a second aspect, an improved apparatus and method are provided for monitoring hemodynamic parameters, such as blood pressure, in a continuous and non-invasive manner while operating under a single unifying scheme. One variant of this scheme using a simulated annealing (SA) type approach to determining and maintaining an optimal operating state.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 14, 2019
    Assignee: United States GTM Medical Devices
    Inventors: Andrew S. Katayama, Todd A. Keitel, Manouchehr Goharlaee, Stuart L. Gallant, Warren B. Craycroft
  • Patent number: 9757057
    Abstract: Disclosed are embodiments that relate to the deployment of a glucose sensor comprising an optical fiber into a physiological fluid, wherein the optical fiber has disposed along a distal region thereof a chemical indicator system comprising a fluorophore and a glucose binding moiety immobilized within a hydrogel, wherein the components of the chemical indicator system are in a dry state before deployment. Also disclosed is a one-point in vivo calibration of the chemical indicator system based on an independently measured glucose concentration.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: September 12, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Stuart L. Gallant, William H. Markle, Manouchehr Goharlaee
  • Publication number: 20160038040
    Abstract: Improved apparatus and methods for non-invasively assessing one or more parameters associated with systems such as fluidic circulating systems (e.g., the circulatory system of a living organism). In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using dynamically applied dither perturbations (e.g., modulation) on the various axes associated with the vessel. In a second aspect, an improved apparatus and method are provided for monitoring hemodynamic parameters, such as blood pressure, in a continuous and non-invasive manner while operating under a single unifying scheme. One variant of this scheme using a simulated annealing (SA) type approach to determining and maintaining an optimal operating state.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 11, 2016
    Inventors: Andrew S. Katayama, Todd A. Keitel, Manouchehr Goharlaee, Stuart L. Gallant, Warren B. Craycroft
  • Publication number: 20150265218
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism, when such parameters are potentially affected by other concurrent events. In one exemplary embodiment, apparatus and methods for compensating for occlusive events (e.g., pressure cuff inflation) occurring ipsilateral to the location of parameter measurement are disclosed. Upon passive detection of signal degradation resulting from the event, the apparatus selectively enters a “wait state” wherein further processing of the hemodynamic data is suspended until the degrading event subsides. This behavior mitigates any adverse effects the event might have on the accuracy of the representation of the measured hemodynamic parameter generated by the system. In another exemplary embodiment, the measured data is analyzed in order to classify the type of event (e.g.
    Type: Application
    Filed: February 23, 2015
    Publication date: September 24, 2015
    Inventors: GREGORY J. MARTIN, GREGORY I. VOSS, MANOUCHEHR GOHARLAEE, STUART L. GALLANT, WARREN CRAYCROFT
  • Patent number: 9107588
    Abstract: Improved apparatus and methods for non-invasively assessing one or more parameters associated with systems such as fluidic circulating systems (e.g., the circulatory system of a living organism). In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using dynamically applied dither perturbations (e.g., modulation) on the various axes associated with the vessel. In a second aspect, an improved apparatus and method are provided for monitoring hemodynamic parameters, such as blood pressure, in a continuous and non-invasive manner while operating under a single unifying scheme. One variant of this scheme using a simulated annealing (SA) type approach to determining and maintaining an optimal operating state.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: August 18, 2015
    Assignee: Tensys Medical, Inc.
    Inventors: Andrew S. Katayama, Todd A. Keitel, Manouchehr Goharlaee, Stuart L. Gallant, Warren B. Craycroft
  • Publication number: 20150201845
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism. In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using perturbations (e.g., modulation) of the compression level of the vessel. In one exemplary embodiment, the modulation is conducted according to a pseudo-random binary sequence (PBRS). In a second aspect, an improved apparatus for determining the blood pressure of a living subject is disclosed, the apparatus generally comprising a pressure sensor and associated processor with a computer program defining a plurality of operating states related to the sensed pressure data. Methods for pressure waveform correction and reacquisition, as well as treatment using the present invention, are also disclosed.
    Type: Application
    Filed: February 2, 2015
    Publication date: July 23, 2015
    Inventors: Gregory I. Voss, Gregory J. Martin, Manouchehr Goharlaee
  • Patent number: 8961426
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism, when such parameters are potentially affected by other concurrent events. In one exemplary embodiment, apparatus and methods for compensating for occlusive events (e.g., pressure cuff inflation) occurring ipsilateral to the location of parameter measurement are disclosed. Upon passive detection of signal degradation resulting from the event, the apparatus selectively enters a “wait state” wherein further processing of the hemodynamic data is suspended until the degrading event subsides. This behavior mitigates any adverse effects the event might have on the accuracy of the representation of the measured hemodynamic parameter generated by the system. In another exemplary embodiment, the measured data is analyzed in order to classify the type of event (e.g.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: February 24, 2015
    Assignee: Tensys Medical, Inc.
    Inventors: Gregory J. Martin, Gregory I. Voss, Manouchehr Goharlaee, Stuart L. Gallant, Warren Craycroft
  • Patent number: 8945016
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism. In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using perturbations (e.g., modulation) of the compression level of the vessel. In one exemplary embodiment, the modulation is conducted according to a pseudo-random binary sequence (PBRS). In a second aspect, an improved apparatus for determining the blood pressure of a living subject is disclosed, the apparatus generally comprising a pressure sensor and associated processor with a computer program defining a plurality of operating states related to the sensed pressure data. Methods for pressure waveform correction and reacquisition, as well as treatment using the present invention, are also disclosed.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 3, 2015
    Assignee: Tensys Medical, Inc.
    Inventors: Gregory I. Voss, Gregory J. Martin, Manouchehr Goharlaee
  • Publication number: 20140046201
    Abstract: Improved apparatus and methods for non-invasively assessing one or more parameters associated with systems such as fluidic circulating systems (e.g., the circulatory system of a living organism). In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using dynamically applied dither perturbations (e.g., modulation) on the various axes associated with the vessel. In a second aspect, an improved apparatus and method are provided for monitoring hemodynamic parameters, such as blood pressure, in a continuous and non-invasive manner while operating under a single unifying scheme. One variant of this scheme using a simulated annealing (SA) type approach to determining and maintaining an optimal operating state.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 13, 2014
    Inventors: ANDREW S. KATAYAMA, Todd A. Keitel, Manouchehr Goharlaee, Stuart L. Gallant, Warren B. Craycroft
  • Patent number: 8506497
    Abstract: Improved apparatus and methods for non-invasively assessing one or more parameters associated with systems such as fluidic circulating systems (e.g., the circulatory system of a living organism). In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using dynamically applied dither perturbations (e.g., modulation) on the various axes associated with the vessel. In a second aspect, an improved apparatus and method are provided for monitoring hemodynamic parameters, such as blood pressure, in a continuous and non-invasive manner while operating under a single unifying scheme. One variant of this scheme using a simulated annealing (SA) type approach to determining and maintaining an optimal operating state.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: August 13, 2013
    Assignee: Tensys Medical, Inc.
    Inventors: Andrew S. Katayama, Todd A. Keitel, Manouchehr Goharlaee, Stuart L. Gallant, Warren B. Craycroft
  • Publication number: 20110263991
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism, when such parameters are potentially affected by other concurrent events. In one exemplary embodiment, apparatus and methods for compensating for occlusive events (e.g., pressure cuff inflation) occurring ipsilateral to the location of parameter measurement are disclosed. Upon passive detection of signal degradation resulting from the event, the apparatus selectively enters a “wait state” wherein further processing of the hemodynamic data is suspended until the degrading event subsides. This behavior mitigates any adverse effects the event might have on the accuracy of the representation of the measured hemodynamic parameter generated by the system. In another exemplary embodiment, the measured data is analyzed in order to classify the type of event (e.g.
    Type: Application
    Filed: July 11, 2011
    Publication date: October 27, 2011
    Inventors: Gregory J. Martin, Gregory I. Voss, Manouchehr Goharlaee, Stuart L. Gallant, Warren Craycroft
  • Publication number: 20110237961
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism. In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using perturbations (e.g., modulation) of the compression level of the vessel. In one exemplary embodiment, the modulation is conducted according to a pseudo-random binary sequence (PBRS). In a second aspect, an improved apparatus for determining the blood pressure of a living subject is disclosed, the apparatus generally comprising a pressure sensor and associated processor with a computer program defining a plurality of operating states related to the sensed pressure data. Methods for pressure waveform correction and reacquisition, as well as treatment using the present invention, are also disclosed.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Inventors: Gregory I. Voss, Gregory J. Martin, Manouchehr Goharlaee
  • Patent number: 7976471
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism, when such parameters are potentially affected by other concurrent events. In one exemplary embodiment, apparatus and methods for compensating for occlusive events (e.g., pressure cuff inflation) occurring ipsilateral to the location of parameter measurement are disclosed. Upon passive detection of signal degradation resulting from the event, the apparatus selectively enters a “wait state” wherein further processing of the hemodynamic data is suspended until the degrading event subsides. This behavior mitigates any adverse effects the event might have on the accuracy of the representation of the measured hemodynamic parameter generated by the system. In another exemplary embodiment, the measured data is analyzed in order to classify the type of event (e.g.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: July 12, 2011
    Assignee: Tensys Medical, Inc.
    Inventors: Gregory J. Martin, Gregory I. Voss, Manouchehr Goharlaee, Stuart L. Gallant, Warren Craycroft
  • Patent number: 7955267
    Abstract: Improved methods and apparatus for non-invasively assessing one or more parameters associated with fluidic systems such as the circulatory system of a living organism. In a first aspect, an improved method of continuously measuring pressure from a compressible vessel is disclosed, wherein a substantially optimal level of compression for the vessel is achieved and maintained using perturbations (e.g., modulation) of the compression level of the vessel. In one exemplary embodiment, the modulation is conducted according to a pseudo-random binary sequence (PBRS). In a second aspect, an improved apparatus for determining the blood pressure of a living subject is disclosed, the apparatus generally comprising a pressure sensor and associated processor with a computer program defining a plurality of operating states related to the sensed pressure data. Methods for pressure waveform correction and reacquisition, as well as treatment using the present invention, are also disclosed.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: June 7, 2011
    Inventors: Gregory I. Voss, Gregory J. Martin, Manouchehr Goharlaee