Patents by Inventor Mansoor M. Ahmed

Mansoor M. Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160256708
    Abstract: A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    Type: Application
    Filed: January 10, 2013
    Publication date: September 8, 2016
    Inventors: Xiaodong Wu, Mansoor M. Ahmed, Alan Pollack
  • Patent number: 9155830
    Abstract: The present invention provides for a biocompatible drug delivery device for the targeted treatment of cancer that is implantable within the tumorous mass of a patient. In one embodiment, the device comprises two polarizable elements mechanically coupled by a connecting element. The device also comprises one or more cancer treatment agents. When the polarizable elements are depolarized, such as by the application of ionizing radiation, the two polarizable elements are repelled from each other and release the cancer treatment agent. In another embodiment, one or more treatment agents are expelled from a miniaturized syringe when internal pressure of the device is increased by the production of gas bubbles in response to the application of ionizing radiation.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 13, 2015
    Assignee: University of Miami
    Inventors: Mansoor M. Ahmed, Xiaodong Wu, Seema Gupta, Alan Pollack
  • Publication number: 20140194667
    Abstract: A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Inventors: Xiaodong Wu, Mansoor M. Ahmed, Alan Pollack
  • Patent number: 8395131
    Abstract: A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    Type: Grant
    Filed: June 20, 2010
    Date of Patent: March 12, 2013
    Inventors: Xiaodong Wu, Mansoor M. Ahmed, Alan Pollack
  • Publication number: 20100320402
    Abstract: A method for high-dose Grid radiotherapy utilizing a three-dimensional (3D) dose lattice formation is described herein. The 3D dose lattice can be achieved by, but not limited to, three technical approaches: 1) non-coplanar focused beams; 2) multileaf collimator (MLC)-based intensity modulated radiation therapy (IMRT) or aperture-modulated arc; and 3) heavy charged particle beam. The configuration of a 3D dose lattice is comprised of the number, location, and dose of dose vertices. The optimal configuration of a 3D dose lattice can be achieved by manual calculations or by automating the calculations for a generic algorithm. The objective of the optimization algorithm is to satisfy three conditions via iteration until they reach their global minimum. With 3D dose lattice, high doses of radiation are concentrated at each lattice vertex within a tumor with drastically lower doses between vertices (peak-to-valley effect), leaving tissue outside of the tumor volume minimally exposed.
    Type: Application
    Filed: June 20, 2010
    Publication date: December 23, 2010
    Inventors: Xiaodong Wu, Mansoor M. Ahmed, Alan Pollack