Patents by Inventor Mantu K. Hudait

Mantu K. Hudait has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10177249
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: January 8, 2019
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Patent number: 10141437
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: November 27, 2018
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Amlan Majumdar, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 10084058
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 25, 2018
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Patent number: 9991172
    Abstract: In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: June 5, 2018
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Jack T. Kavalieros, Suman Datta, Marko Radosavljevic
  • Publication number: 20170309734
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 26, 2017
    Inventors: Suman DATTA, Mantu K. HUDAIT, Mark L. DOCZY, Jack T. KAVALIEROS, Amlan MAJUMDAR, Justin K. BRASK, Been-Yih JIN, Matthew V. METZ, Robert S. CHAU
  • Publication number: 20170309735
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 26, 2017
    Inventors: Ravi Pillarisetty, Bejamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Patent number: 9704981
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: July 11, 2017
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Patent number: 9691856
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Amlan Majumdar, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 9548363
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 17, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20160372574
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Application
    Filed: July 25, 2016
    Publication date: December 22, 2016
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Publication number: 20160268407
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Patent number: 9443936
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 13, 2016
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Patent number: 9356099
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: May 31, 2016
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Publication number: 20160111423
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar AmIan, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20150214118
    Abstract: In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventors: Mantu K. Hudait, Jack T. Kavalieros, Suman Datta, Marko Radosavljevic
  • Publication number: 20150111358
    Abstract: A surface channel transistor is provided in a semiconductive device. The surface channel transistor is either a PMOS or an NMOS device. Epitaxial layers are disposed above the surface channel transistor to cause an increased bandgap phenomenon nearer the surface of the device. A process of forming the surface channel transistor includes grading the epitaxial layers.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 23, 2015
    Inventors: Ravi PILLARISETTY, Mantu K. HUDAIT, Marko RADOSAVLJEVIC, Gilbert DEWEY, Jack T. KAVALIEROS
  • Patent number: 9006707
    Abstract: In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 14, 2015
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Jack T. Kavalieros, Suman Datta, Marko Radosavljevic
  • Publication number: 20140326953
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Publication number: 20140291615
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8809836
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 19, 2014
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau