Patents by Inventor Manu Kohli

Manu Kohli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140271671
    Abstract: A method for identifying host genes and encoded proteins for potential targets for therapeutic intervention employs a Gene Search Vector that is either lentivirus or MMLV-based, and can be used to interrogate an entire cell genome without prior knowledge of the genomic sequence. This Random Homozygous Gene Perturbation (RUGP) technique is rapidly verifiable and is used to identify potential host targets for intervention for influenza, HIV and other viral infections. Using Thermal Assymetric Interlaced (TAIL)-PCR, the period for identification of promising targets is reduced from months to weeks or less. Specific targets including PTCH1, Robo1 and Nedd4 are reviewed in detail.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Eli Lilly and Company
    Inventors: Michael S. Kinch, Michael Goldblatt, Wu-Bo Li, Douty Bamba, Shaojing Chang, Huosheng Chen, Zenbework Fesseha, Manu Kohli, Hanwen Mao, Heather Thi Thu Ung-Medoff, Ke Weng
  • Patent number: 8535684
    Abstract: A method for identifying host genes and encoded proteins for potential targets for therapeutic intervention employs a Gene Search Vector that is either lentivirus or MMLV-based, and can be used to interrogate an entire cell genome without prior knowledge of the genomic sequence. This Random Homozygous Gene Perturbation (RUGP) technique is rapidly verifiable and is used to identify potential host targets for intervention for influenza, HIV and other viral infections. Using Thermal Assymetric Interlaced (TAIL)-PCR, the period for identification of promising targets is reduced from months to weeks or less. Specific targets including PTCH1, Robo1 and Nedd4 are reviewed in detail.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 17, 2013
    Assignee: Functional Genetics, Inc.
    Inventors: Michael S. Kinch, Michael Goldblatt, Wu-Bo Li, Douty Bamba, Shaojing Chang, Huosheng Chen, Zenbework Fesseha, Manu Kohli, Hanwen Mao, Heather Thi Thu Ung-Medoff, Ke Weng
  • Publication number: 20110206695
    Abstract: XMRV appears to be related to both prostate cancer if it infects a male germ cell and chronic fatigue syndrome in both sexes. (If the virus does not infect a germ cell). Prostate cancer cells exhibit TSG101 on the surface only upon infection with a virus like XMRV. Antibodies to TSG101 can be effective diagnostics to identify individuals with a predisposition to prostate. They can also be used in place of current diagnostics to confirm the presence of prostate cancer. TSG101 antibodies, when administered in vivo, exhibit the ability to reduce tumor size, suppress metastatic transformation and extend survival.
    Type: Application
    Filed: January 25, 2011
    Publication date: August 25, 2011
    Applicant: FUNCTIONAL GENETICS, INC.
    Inventors: Manu Kohli, Michael Goldblatt, Michael Kinch
  • Publication number: 20100183628
    Abstract: A method for identifying host genes and encoded proteins for potential targets for therapeutic intervention employs a Gene Search Vector that is either lentivirus or MMLV-based, and can be used to interrogate an entire cell genome without prior knowledge of the genomic sequence. This Random Homozygous Gene Perturbation (RUGP) technique is rapidly verifiable and is used to identify potential host targets for intervention for influenza, HIV and other viral infections. Using Thermal Assymetric Interlaced (TAIL)-PCR, the period for identification of promising targets is reduced from months to weeks or less. Specific targets including PTCH1, Robo1 and Nedd4 are reviewed in detail.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 22, 2010
    Applicant: FUNCTIONAL GENETICS, INC.
    Inventors: Michael S. Kinch, Michael Goldblatt, Wu-Bo Li, Douty Bamba, Shaojing Chang, Huosheng Chen, Zenbework Fesseha, Manu Kohli, Hanwen Mao, Heather Thi Thu Ung-Medoff, Ke Weng
  • Patent number: 7279304
    Abstract: The preparation of macrocyclic molecules from linear, synthetic thioester precursors is disclosed. An excised thioesterase domain isolated from either a polyketide synthases (PKS) or non-ribosomal peptide synthetases (NRPS) multido system catalyzes the cyclization reaction. Thioester substrates also are described that are efficiently cyclized by the method of the present invention. Additionally, macrocyclic molecules, including macrolactones and macrolactams, that are prepared by the macrocyclization methods of the invention are described.
    Type: Grant
    Filed: December 15, 2001
    Date of Patent: October 9, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Christopher Thomas Walsh, John W. Trauger, Rahul Manu Kohli, Michael D. Burkart, Mohammed A. Maraheil, Henning Dieter Mootz, Dirk Schwarzer
  • Publication number: 20030158377
    Abstract: The invention features a new solid supports having at least one amino functionality and a linker bound to the solid support through at least a portion of the amino functional groups. The invention also features solid support bound substrates suitable for use in the formation of macrocycles by a TE domain catalyzed macrocyclization reaction. The invention features methods of making the solid supports and solid support bound substrates of the invention and methods of effecting macrocyclizations of solid support bound substrates. The invention further provides new macrocyclic molecules having one or more peptide domains and one or more polyketide domains in the macrocyclic ring. In another embodiment of the invention, libraries of macrocycles are provided as well as methods of forming libraries of macrocycles from libraries of solid support bound substrates are provided.
    Type: Application
    Filed: November 6, 2002
    Publication date: August 21, 2003
    Applicant: President and Fellows of Harvard College
    Inventors: Christopher Thomas Walsh, Rahul Manu Kohli, Michael D. Burkart, Martin D. Burke
  • Publication number: 20020192773
    Abstract: The preparation of macrocyclic molecules from linear, synthetic thioester precursors is disclosed. An excised thioesterase domain isolated from either a PKS or NRPS multidomain system catalyzes the cyclization reaction. Thioester substrates also are described that are efficiently cyclized by the method of the present invention. Additionally, macrocyclic molecules, including macrolactones and macrolactams, that are prepared by the macrocyclization methods of the invention are described.
    Type: Application
    Filed: December 15, 2001
    Publication date: December 19, 2002
    Applicant: The President and Fellows of Harvard College
    Inventors: Christopher Thomas Walsh, John W. Trauger, Rahul Manu Kohli, Michael D. Burkart, Mohammed A. Maraheil, Henning Dieter Mootz, Dirk Schwarzer