Patents by Inventor Manu Prasanna

Manu Prasanna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130292571
    Abstract: Optically multiplexed mid-infrared laser systems and the use of such systems for detection and measurement of target materials using multispectral image analysis are disclosed. The systems and methods disclosed herein are useful for detecting and measuring materials in applications such as trace detection, medical diagnostics, medical monitoring, quality control, and high-throughput molecular recognition.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 7, 2013
    Applicant: Infrasign, Inc.
    Inventors: Anadi Mukherjee, Manu Prasanna, Nandini Mukherjee
  • Publication number: 20110158270
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20110103412
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20110102788
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventors: C. Kumar N. Patel, IIya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20110103411
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20110103416
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Patent number: 7903704
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 8, 2011
    Assignee: Pranalytica, Inc.
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20090116518
    Abstract: A high efficiency, low cost, nondispersive optical multiplexing arrangement for optical beams, used a technique denominated “Reverse Laser Scanning.” In the Reverse Laser Scanning operation, different laser beams angularly meet on the rotational axis of a galvanometer-mounted mirror or the like. Upon reflection from the mirror, each of the laser beams is propagated along one defined direction by appropriate angular positioning of the galvanometer mirror. The process enables several useful deployments, including multi-chemical detection using several lasers in the same sensor, remotely operated laser switching for medical surgery and diagnosis where multiple lasers may be used, and wavelength, code, and time division multiplexing in communication systems, among others.
    Type: Application
    Filed: November 2, 2007
    Publication date: May 7, 2009
    Inventors: C.Kumar N. Patel, Anadi Mukherjee, Manu Prasanna
  • Publication number: 20080159341
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: June 22, 2007
    Publication date: July 3, 2008
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini